
X Window System Protocol
i

X Window System Protocol

X Consortium Standard

X Window System Protocol
ii

Copyright © 1986,1987,1988,1994,2004 The Open Group

X Window System is a trademark of The Open Group.

Copyright 1986, 1987, 1988, 1994, 2004 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the Open Group shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Software without prior written authorization from the Open Group.

X Window System Protocol
iii

Contents

1 Protocol Formats 1

2 Syntactic Conventions 2

3 Common Types 3

4 Errors 5

5 Keyboards 7

6 Pointers 9

7 Predefined Atoms 10

8 Connection Setup 11

9 Requests 15

10 Connection Close 61

11 Events 62

12 Flow Control and Concurrency 73

A KEYSYM Encoding 74

A.1 Special KEYSYMs . 74

A.2 Latin-1 KEYSYMs . 74

A.3 Unicode KEYSYMs . 74

A.4 Function KEYSYMs . 75

A.5 Vendor KEYSYMs . 79

A.6 Legacy KEYSYMs . 79

X Window System Protocol
iv

B Protocol Encoding 95

B.1 Syntactic Conventions . 95

B.2 Common Types . 97

B.3 Errors . 100

B.4 Keyboards . 103

B.5 Pointers . 103

B.6 Predefined Atoms . 103

B.7 Connection Setup . 104

B.8 Requests . 106

B.9 Events . 139

13 Glossary 148

14 Index 156

X Window System Protocol
v

Acknowledgements

The primary contributers to the X11 protocol are:

• Dave Carver (Digital HPW)

• Branko Gerovac (Digital HPW)

• Jim Gettys (MIT/Project Athena, Digital)

• Phil Karlton (Digital WSL)

• Scott McGregor (Digital SSG)

• Ram Rao (Digital UEG)

• David Rosenthal (Sun)

• Dave Winchell (Digital UEG)

The implementors of initial server who provided useful input are:

• Susan Angebranndt (Digital)

• Raymond Drewry (Digital)

• Todd Newman (Digital)

The invited reviewers who provided useful input are:

• Andrew Cherenson (Berkeley)

• Burns Fisher (Digital)

• Dan Garfinkel (HP)

• Leo Hourvitz (Next)

• Brock Krizan (HP)

• David Laidlaw (Stellar)

• Dave Mellinger (Interleaf)

• Ron Newman (MIT)

• John Ousterhout (Berkeley)

• Andrew Palay (ITC CMU)

• Ralph Swick (MIT)

X Window System Protocol
vi

• Craig Taylor (Sun)

• Jeffery Vroom (Stellar)

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting this document.

This document does not attempt to provide the rationale or pragmatics required to fully understand the protocol or to place it in
perspective within a complete system.

The protocol contains many management mechanisms that are not intended for normal applications. Not all mechanisms are
needed to build a particular user interface. It is important to keep in mind that the protocol is intended to provide mechanism, not
policy.

Robert W. Scheifler

X Consortium, Inc.

X Window System Protocol
1 / 159

Chapter 1

Protocol Formats

Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed in units of four bytes. Every request consists of
four bytes of a header (containing the major opcode, the length field, and a data byte) followed by zero or more additional bytes
of data. The length field defines the total length of the request, including the header. The length field in a request must equal the
minimum length required to contain the request. If the specified length is smaller or larger than the required length, an error is
generated. Unused bytes in a request are not required to be zero. Major opcodes 128 through 255 are reserved for extensions.
Extensions are intended to contain multiple requests, so extension requests typically have an additional minor opcode encoded in
the second data byte in the request header. However, the placement and interpretation of this minor opcode and of all other fields
in extension requests are not defined by the core protocol. Every request on a given connection is implicitly assigned a sequence
number, starting with one, that is used in replies, errors, and events.

Reply Format

Every reply contains a 32-bit length field expressed in units of four bytes. Every reply consists of 32 bytes followed by zero or
more additional bytes of data, as specified in the length field. Unused bytes within a reply are not guaranteed to be zero. Every
reply also contains the least significant 16 bits of the sequence number of the corresponding request.

Error Format

Error reports are 32 bytes long. Every error includes an 8-bit error code. Error codes 128 through 255 are reserved for extensions.
Every error also includes the major and minor opcodes of the failed request and the least significant 16 bits of the sequence number
of the request. For the following errors (see section 4), the failing resource ID is also returned: Colormap, Cursor, Drawable,
Font, GContext, IDChoice, Pixmap and Window. For Atom errors, the failing atom is returned. For Value errors, the failing
value is returned. Other core errors return no additional data. Unused bytes within an error are not guaranteed to be zero.

Event Format

Events are 32 bytes long. Unused bytes within an event are not guaranteed to be zero. Every event contains an 8-bit type code.
The most significant bit in this code is set if the event was generated from a SendEvent request. Event codes 64 through 127
are reserved for extensions, although the core protocol does not define a mechanism for selecting interest in such events. Every
core event (with the exception of KeymapNotify) also contains the least significant 16 bits of the sequence number of the last
request issued by the client that was (or is currently being) processed by the server.

X Window System Protocol
2 / 159

Chapter 2

Syntactic Conventions

The rest of this document uses the following syntactic conventions.

• The syntax {...} encloses a set of alternatives.

• The syntax [...] encloses a set of structure components.

• In general, TYPEs are in uppercase and AlternativeValues are capitalized.

• Requests in section 9 are described in the following format:

• RequestName
arg1: type1
...
argN: typeN

->
result1: type1
...
resultM: typeM

Errors: kind1, ..., kindK

Description.

• If no -> is present in the description, then the request has no reply (it is asynchronous), although errors may still be reported.
If ->+ is used, then one or more replies can be generated for a single request.

• Events in section 11 are described in the following format:

• EventName
value1: type1
...
valueN: typeN

Description.

X Window System Protocol
3 / 159

Chapter 3

Common Types

Name Value

LISTofFOO

A type name of the form LISTofFOO means a counted list of elements of type
FOO. The size of the length field may vary (it is not necessarily the same size
as a FOO), and in some cases, it may be implicit. It is fully specified in
Appendix B. Except where explicitly noted, zero-length lists are legal.

BITMASK
LISTofVALUE

The types BITMASK and LISTofVALUE are somewhat special. Various
requests contain arguments of the form:
value-mask: BITMASK
value-list: LISTofVALUE
These are used to allow the client to specify a subset of a heterogeneous
collection of optional arguments. The value-mask specifies which arguments
are to be provided; each such argument is assigned a unique bit position. The
representation of the BITMASK will typically contain more bits than there are
defined arguments. The unused bits in the value-mask must be zero (or the
server generates a Value error). The value-list contains one value for each bit
set to 1 in the mask, from least significant to most significant bit in the mask.
Each value is represented with four bytes, but the actual value occupies only the
least significant bytes as required. The values of the unused bytes do not matter.

OR A type of the form "T1 or ... or Tn" means the union of the indicated types. A
single-element type is given as the element without enclosing braces.

WINDOW 32-bit value (top three bits guaranteed to be zero)
PIXMAP 32-bit value (top three bits guaranteed to be zero)
CURSOR 32-bit value (top three bits guaranteed to be zero)
FONT 32-bit value (top three bits guaranteed to be zero)
GCONTEXT 32-bit value (top three bits guaranteed to be zero)
COLORMAP 32-bit value (top three bits guaranteed to be zero)
DRAWABLE WINDOW or PIXMAP
FONTABLE FONT or GCONTEXT
ATOM 32-bit value (top three bits guaranteed to be zero)
VISUALID 32-bit value (top three bits guaranteed to be zero)
VALUE 32-bit quantity (used only in LISTofVALUE)
BYTE 8-bit value
INT8 8-bit signed integer
INT16 16-bit signed integer
INT32 32-bit signed integer
CARD8 8-bit unsigned integer
CARD16 16-bit unsigned integer
CARD32 32-bit unsigned integer
TIMESTAMP CARD32

X Window System Protocol
4 / 159

Name Value

BITGRAVITY { Forget, Static, NorthWest, North, NorthEast, West, Center, East,
SouthWest, South, SouthEast }

WINGRAVITY { Unmap, Static, NorthWest, North, NorthEast, West, Center, East,
SouthWest, South, SouthEast }

BOOL { True, False }

EVENT

{ KeyPress, KeyRelease, OwnerGrabButton, ButtonPress, ButtonRelease,
EnterWindow, LeaveWindow, PointerMotion, PointerMotionHint,
Button1Motion, Button2Motion, Button3Motion, Button4Motion,
Button5Motion, ButtonMotion, Exposure, VisibilityChange,
StructureNotify, ResizeRedirect, SubstructureNotify,
SubstructureRedirect, FocusChange, PropertyChange, ColormapChange,
KeymapState }

POINTEREVENT

{ ButtonPress, ButtonRelease, EnterWindow, LeaveWindow,
PointerMotion, PointerMotionHint, Button1Motion, Button2Motion,
Button3Motion, Button4Motion, Button5Motion, ButtonMotion,
KeymapState }

DEVICEEVENT
{ KeyPress, KeyRelease, ButtonPress, ButtonRelease, PointerMotion,
Button1Motion, Button2Motion, Button3Motion, Button4Motion,
Button5Motion, ButtonMotion }

KEYSYM 32-bit value (top three bits guaranteed to be zero)
KEYCODE CARD8
BUTTON CARD8
KEYMASK { Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, Mod5 }
BUTMASK { Button1, Button2, Button3, Button4, Button5 }
KEYBUTMASK KEYMASK or BUTMASK
STRING8 LISTofCARD8
STRING16 LISTofCHAR2B
CHAR2B [byte1, byte2: CARD8]
POINT [x, y: INT16]

RECTANGLE [x, y: INT16,
width, height: CARD16]

ARC
[x, y: INT16,
width, height: CARD16,
angle1, angle2: INT16]

HOST [family: { Internet, InternetV6, ServerInterpreted, DECnet, Chaos }
address: LISTofBYTE]

The [x,y] coordinates of a RECTANGLE specify the upper-left corner.

The primary interpretation of large characters in a STRING16 is that they are composed of two bytes used to index a two-
dimensional matrix, hence, the use of CHAR2B rather than CARD16. This corresponds to the JIS/ISO method of indexing
2-byte characters. It is expected that most large fonts will be defined with 2-byte matrix indexing. For large fonts constructed
with linear indexing, a CHAR2B can be interpreted as a 16-bit number by treating byte1 as the most significant byte. This means
that clients should always transmit such 16-bit character values most significant byte first, as the server will never byte-swap
CHAR2B quantities.

The length, format, and interpretation of a HOST address are specific to the family (see ChangeHosts request).

X Window System Protocol
5 / 159

Chapter 4

Errors

In general, when a request terminates with an error, the request has no side effects (that is, there is no partial execution). The only
requests for which this is not true are ChangeWindowAttributes ChangeGC, PolyText8, PolyText16, FreeColors, StoreCol-
ors and ChangeKeyboardControl.

The following error codes result from various requests as follows:

Error Description

Access

An attempt is made to grab a key/button combination already grabbed by
another client. An attempt is made to free a colormap entry not allocated by the
client or to free an entry in a colormap that was created with all entries
writable. An attempt is made to store into a read-only or an unallocated
colormap entry. An attempt is made to modify the access control list from other
than the local host (or otherwise authorized client). An attempt is made to
select an event type that only one client can select at a time when another client
has already selected it.

Alloc

The server failed to allocate the requested resource. Note that the explicit
listing of Alloc errors in request only covers allocation errors at a very coarse
level and is not intended to cover all cases of a server running out of allocation
space in the middle of service. The semantics when a server runs out of
allocation space are left unspecified, but a server may generate an Alloc error
on any request for this reason, and clients should be prepared to receive such
errors and handle or discard them.

Atom A value for an ATOM argument does not name a defined ATOM.
Colormap A value for a COLORMAP argument does not name a defined COLORMAP.
Cursor A value for a CURSOR argument does not name a defined CURSOR.

Drawable A value for a DRAWABLE argument does not name a defined WINDOW or
PIXMAP.

Font
A value for a FONT argument does not name a defined FONT. A value for a
FONTABLE argument does not name a defined FONT or a defined
GCONTEXT.

GContext A value for a GCONTEXT argument does not name a defined GCONTEXT.

IDChoice The value chosen for a resource identifier either is not included in the range
assigned to the client or is already in use.

Implementation

The server does not implement some aspect of the request. A server that
generates this error for a core request is deficient. As such, this error is not
listed for any of the requests, but clients should be prepared to receive such
errors and handle or discard them.

Length
The length of a request is shorter or longer than that required to minimally
contain the arguments. The length of a request exceeds the maximum length
accepted by the server.

X Window System Protocol
6 / 159

Error Description

Match

An InputOnly window is used as a DRAWABLE. In a graphics request, the
GCONTEXT argument does not have the same root and depth as the
destination DRAWABLE argument. Some argument (or pair of arguments) has
the correct type and range, but it fails to match in some other way required by
the request.

Name A font or color of the specified name does not exist.
Pixmap A value for a PIXMAP argument does not name a defined PIXMAP.
Request The major or minor opcode does not specify a valid request.

Value

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined by
the argument’s type is accepted. Any argument defined as a set of alternatives
typically can generate this error (due to the encoding).

Window A value for a WINDOW argument does not name a defined WINDOW.

Note
The Atom, Colormap, Cursor, Drawable, Font, GContext, Pixmap and Window errors are also used when the argument
type is extended by union with a set of fixed alternatives, for example, <WINDOW or PointerRoot or None >.

X Window System Protocol
7 / 159

Chapter 5

Keyboards

A KEYCODE represents a physical (or logical) key. Keycodes lie in the inclusive range [8,255]. A keycode value carries no
intrinsic information, although server implementors may attempt to encode geometry information (for example, matrix) to be
interpreted in a server-dependent fashion. The mapping between keys and keycodes cannot be changed using the protocol.

A KEYSYM is an encoding of a symbol on the cap of a key. The set of defined KEYSYMs include the character sets Latin-1,
Latin-2, Latin-3, Latin-4, Kana, Arabic, Cyrillic, Greek, Tech, Special, Publish, APL, Hebrew, Thai, and Korean as well as a set
of symbols common on keyboards (Return, Help, Tab, and so on). KEYSYMs with the most significant bit (of the 29 bits) set
are reserved as vendor-specific.

A list of KEYSYMs is associated with each KEYCODE. The list is intended to convey the set of symbols on the corresponding
key. If the list (ignoring trailing NoSymbol entries) is a single KEYSYM "K", then the list is treated as if it were the list "K
NoSymbol K NoSymbol". If the list (ignoring trailing NoSymbol entries) is a pair of KEYSYMs "K1 K2", then the list is treated
as if it were the list "K1 K2 K1 K2". If the list (ignoring trailing NoSymbol entries) is a triple of KEYSYMs "K1 K2 K3", then
the list is treated as if it were the list " K1 K2 K3 NoSymbol". When an explicit "void" element is desired in the list, the value
VoidSymbol can be used.

The first four elements of the list are split into two groups of KEYSYMs. Group 1 contains the first and second KEYSYMs,
Group 2 contains the third and fourth KEYSYMs. Within each group, if the second element of the group is NoSymbol , then the
group should be treated as if the second element were the same as the first element, except when the first element is an alphabetic
KEYSYM "K" for which both lowercase and uppercase forms are defined. In that case, the group should be treated as if the first
element were the lowercase form of "K" and the second element were the uppercase form of "K".

The standard rules for obtaining a KEYSYM from a KeyPress event make use of only the Group 1 and Group 2 KEYSYMs; no
interpretation of other KEYSYMs in the list is defined. The modifier state determines which group to use. Switching between
groups is controlled by the KEYSYM named MODE SWITCH, by attaching that KEYSYM to some KEYCODE and attaching
that KEYCODE to any one of the modifiers Mod1 through Mod5 . This modifier is called the "group modifier". For any
KEYCODE, Group 1 is used when the group modifier is off, and Group 2 is used when the group modifier is on.

The Lock modifier is interpreted as CapsLock when the KEYSYM named CAPS LOCK is attached to some KEYCODE and
that KEYCODE is attached to the Lock modifier. The Lock modifier is interpreted as ShiftLock when the KEYSYM named
SHIFT LOCK is attached to some KEYCODE and that KEYCODE is attached to the Lock modifier. If the Lock modifier could
be interpreted as both CapsLock and ShiftLock, the CapsLock interpretation is used.

The operation of "keypad" keys is controlled by the KEYSYM named NUM LOCK, by attaching that KEYSYM to some
KEYCODE and attaching that KEYCODE to any one of the modifiers Mod1 through Mod5 . This modifier is called the
"numlock modifier". The standard KEYSYMs with the prefix KEYPAD in their name are called "keypad" KEYSYMs; these are
KEYSYMS with numeric value in the hexadecimal range #xFF80 to #xFFBD inclusive. In addition, vendor-specific KEYSYMS
in the hexadecimal range #x11000000 to #x1100FFFF are also keypad KEYSYMs.

Within a group, the choice of KEYSYM is determined by applying the first rule that is satisfied from the following list:

• The numlock modifier is on and the second KEYSYM is a keypad KEYSYM. In this case, if the Shift modifier is on, or if the
Lock modifier is on and is interpreted as ShiftLock, then the first KEYSYM is used; otherwise, the second KEYSYM is used.

X Window System Protocol
8 / 159

• The Shift and Lock modifiers are both off. In this case, the first KEYSYM is used.

• The Shift modifier is off, and the Lock modifier is on and is interpreted as CapsLock. In this case, the first KEYSYM is used,
but if that KEYSYM is lowercase alphabetic, then the corresponding uppercase KEYSYM is used instead.

• The Shift modifier is on, and the Lock modifier is on and is interpreted as CapsLock. In this case, the second KEYSYM is
used, but if that KEYSYM is lowercase alphabetic, then the corresponding uppercase KEYSYM is used instead.

• The Shift modifier is on, or the Lock modifier is on and is interpreted as ShiftLock, or both. In this case, the second KEYSYM
is used.

The mapping between KEYCODEs and KEYSYMs is not used directly by the server; it is merely stored for reading and writing
by clients.

X Window System Protocol
9 / 159

Chapter 6

Pointers

Buttons are always numbered starting with one.

X Window System Protocol
10 / 159

Chapter 7

Predefined Atoms

Predefined atoms are not strictly necessary and may not be useful in all environments, but they will eliminate many InternAtom
requests in most applications. Note that they are predefined only in the sense of having numeric values, not in the sense of
having required semantics. The core protocol imposes no semantics on these names, but semantics are specified in other X
Window System standards, such as the Inter-Client Communication Conventions Manual and the X Logical Font Description
Conventions.

The following names have predefined atom values. Note that uppercase and lowercase matter.

ARC ITALIC_ANGLE STRING
ATOM MAX_SPACE SUBSCRIPT_X
BITMAP MIN_SPACE SUBSCRIPT_Y
CAP_HEIGHT NORM_SPACE SUPERSCRIPT_X
CARDINAL NOTICE SUPERSCRIPT_Y
COLORMAP PIXMAP UNDERLINE_POSITION
COPYRIGHT POINT UNDERLINE_THICKNESS
CURSOR POINT_SIZE VISUALID
CUT_BUFFER0 PRIMARY WEIGHT
CUT_BUFFER1 QUAD_WIDTH WINDOW
CUT_BUFFER2 RECTANGLE WM_CLASS
CUT_BUFFER3 RESOLUTION WM_CLIENT_MACHINE
CUT_BUFFER4 RESOURCE_MANAGER WM_COMMAND
CUT_BUFFER5 RGB_BEST_MAP WM_HINTS
CUT_BUFFER6 RGB_BLUE_MAP WM_ICON_NAME
CUT_BUFFER7 RGB_COLOR_MAP WM_ICON_SIZE
DRAWABLE RGB_DEFAULT_MAP WM_NAME
END_SPACE RGB_GRAY_MAP WM_NORMAL_HINTS
FAMILY_NAME RGB_GREEN_MAP WM_SIZE_HINTS
FONT RGB_RED_MAP WM_TRANSIENT_FOR
FONT_NAME SECONDARY WM_ZOOM_HINTS
FULL_NAME STRIKEOUT_ASCENT X_HEIGHT
INTEGER STRIKEOUT_DESCENT

To avoid conflicts with possible future names for which semantics might be imposed (either at the protocol level or in terms of
higher level user interface models), names beginning with an underscore should be used for atoms that are private to a particular
vendor or organization. To guarantee no conflicts between vendors and organizations, additional prefixes need to be used.
However, the protocol does not define the mechanism for choosing such prefixes. For names private to a single application or
end user but stored in globally accessible locations, it is suggested that two leading underscores be used to avoid conflicts with
other names.

X Window System Protocol
11 / 159

Chapter 8

Connection Setup

For remote clients, the X protocol can be built on top of any reliable byte stream.

Connection Initiation

The client must send an initial byte of data to identify the byte order to be employed. The value of the byte must be octal 102
or 154. The value 102 (ASCII uppercase B) means values are transmitted most significant byte first, and value 154 (ASCII
lowercase l) means values are transmitted least significant byte first. Except where explicitly noted in the protocol, all 16-bit and
32-bit quantities sent by the client must be transmitted with this byte order, and all 16-bit and 32-bit quantities returned by the
server will be transmitted with this byte order.

Following the byte-order byte, the client sends the following information at connection setup:

protocol-major-version: CARD16

protocol-minor-version: CARD16

authorization-protocol-name: STRING8

authorization-protocol-data: STRING8

The version numbers indicate what version of the protocol the client expects the server to implement.

The authorization name indicates what authorization (and authentication) protocol the client expects the server to use, and the
data is specific to that protocol. Specification of valid authorization mechanisms is not part of the core X protocol. A server that
does not implement the protocol the client expects or that only implements the host-based mechanism may simply ignore this
information. If both name and data strings are empty, this is to be interpreted as "no explicit authorization."

Server Response

The client receives the following information at connection setup:

• success: { Failed, Success, Authenticate}

The client receives the following additional data if the returned success value is Failed, and the connection is not successfully
established:

protocol-major-version: CARD16

protocol-minor-version: CARD16

reason: STRING8

The client receives the following additional data if the returned success value is Authenticate, and further authentication negoti-
ation is required:

X Window System Protocol
12 / 159

reason: STRING8

The contents of the reason string are specific to the authorization protocol in use. The semantics of this authentication negotiation
are not constrained, except that the negotiation must eventually terminate with a reply from the server containing a success value
of Failed or Success.

The client receives the following additional data if the returned success value is Success , and the connection is successfully
established:

protocol-major-version: CARD16

protocol-minor-version: CARD16

vendor: STRING8

release-number: CARD32

resource-id-base, resource-id-mask: CARD32

image-byte-order: { LSBFirst, MSBFirst }

bitmap-scanline-unit: {8, 16, 32}

bitmap-scanline-pad: {8, 16, 32}

bitmap-bit-order: { LeastSignificant, MostSignificant }

pixmap-formats: LISTofFORMAT

roots: LISTofSCREEN

motion-buffer-size: CARD32

maximum-request-length: CARD16

min-keycode, max-keycode: KEYCODE

where:

FORMAT: [depth: CARD8,
bits-per-pixel: {1, 4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]

SCREEN: [root: WINDOW
width-in-pixels, height-in-pixels: CARD16
width-in-millimeters, height-in-millimeters: CARD16
allowed-depths: LISTofDEPTH
root-depth: CARD8
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
min-installed-maps, max-installed-maps: CARD16
backing-stores: {Never, WhenMapped, Always}
save-unders: BOOL
current-input-masks: SETofEVENT]

DEPTH: [depth: CARD8
visuals: LISTofVISUALTYPE]

VISUALTYPE: [visual-id: VISUALID
class: {StaticGray, StaticColor, TrueColor, GrayScale,
PseudoColor, DirectColor}
red-mask, green-mask, blue-mask: CARD32
bits-per-rgb-value: CARD8
colormap-entries: CARD16]

X Window System Protocol
13 / 159

Server Information

The information that is global to the server is:

The protocol version numbers are an escape hatch in case future revisions of the protocol are necessary. In general, the major
version would increment for incompatible changes, and the minor version would increment for small upward compatible changes.
Barring changes, the major version will be 11, and the minor version will be 0. The protocol version numbers returned indicate
the protocol the server actually supports. This might not equal the version sent by the client. The server can (but need not) refuse
connections from clients that offer a different version than the server supports. A server can (but need not) support more than
one version simultaneously.

The vendor string gives some identification of the owner of the server implementation. The vendor controls the semantics of the
release number.

The resource-id-mask contains a single contiguous set of bits (at least 18). The client allocates resource IDs for types WINDOW,
PIXMAP, CURSOR, FONT, GCONTEXT, and COLORMAP by choosing a value with only some subset of these bits set and
ORing it with resource-id-base. Only values constructed in this way can be used to name newly created resources over this
connection. Resource IDs never have the top three bits set. The client is not restricted to linear or contiguous allocation of
resource IDs. Once an ID has been freed, it can be reused. An ID must be unique with respect to the IDs of all other resources,
not just other resources of the same type. However, note that the value spaces of resource identifiers, atoms, visualids, and
keysyms are distinguished by context, and as such, are not required to be disjoint; for example, a given numeric value might be
both a valid window ID, a valid atom, and a valid keysym.

Although the server is in general responsible for byte-swapping data to match the client, images are always transmitted and
received in formats (including byte order) specified by the server. The byte order for images is given by image-byte-order and
applies to each scanline unit in XY format (bitmap format) and to each pixel value in Z format.

A bitmap is represented in scanline order. Each scanline is padded to a multiple of bits as given by bitmap-scanline-pad. The pad
bits are of arbitrary value. The scanline is quantized in multiples of bits as given by bitmap-scanline-unit. The bitmap-scanline-
unit is always less than or equal to the bitmap-scanline-pad. Within each unit, the leftmost bit in the bitmap is either the least
significant or most significant bit in the unit, as given by bitmap-bit-order. If a pixmap is represented in XY format, each plane
is represented as a bitmap, and the planes appear from most significant to least significant in bit order with no padding between
planes.

Pixmap-formats contains one entry for each depth value. The entry describes the Z format used to represent images of that depth.
An entry for a depth is included if any screen supports that depth, and all screens supporting that depth must support only that
Z format for that depth. In Z format, the pixels are in scanline order, left to right within a scanline. The number of bits used
to hold each pixel is given by bits-per-pixel. Bits-per-pixel may be larger than strictly required by the depth, in which case the
least significant bits are used to hold the pixmap data, and the values of the unused high-order bits are undefined. When the
bits-per-pixel is 4, the order of nibbles in the byte is the same as the image byte-order. When the bits-per-pixel is 1, the format is
identical for bitmap format. Each scanline is padded to a multiple of bits as given by scanline-pad. When bits-per-pixel is 1, this
will be identical to bitmap-scanline-pad.

How a pointing device roams the screens is up to the server implementation and is transparent to the protocol. No geometry is
defined among screens.

The server may retain the recent history of pointer motion and do so to a finer granularity than is reported by MotionNotify
events. The GetMotionEvents request makes such history available. The motion-buffer-size gives the approximate maximum
number of elements in the history buffer.

Maximum-request-length specifies the maximum length of a request accepted by the server, in 4-byte units. That is, length is the
maximum value that can appear in the length field of a request. Requests larger than this maximum generate a Length error, and
the server will read and simply discard the entire request. Maximum-request-length will always be at least 4096 (that is, requests
of length up to and including 16384 bytes will be accepted by all servers).

Min-keycode and max-keycode specify the smallest and largest keycode values transmitted by the server. Min-keycode is never
less than 8, and max-keycode is never greater than 255. Not all keycodes in this range are required to have corresponding keys.

Screen Information

The information that applies per screen is:

The allowed-depths specifies what pixmap and window depths are supported. Pixmaps are supported for each depth listed, and
windows of that depth are supported if at least one visual type is listed for the depth. A pixmap depth of one is always supported

X Window System Protocol
14 / 159

and listed, but windows of depth one might not be supported. A depth of zero is never listed, but zero-depth InputOnly windows
are always supported.

Root-depth and root-visual specify the depth and visual type of the root window. Width-in-pixels and height-in-pixels specify the
size of the root window (which cannot be changed). The class of the root window is always InputOutput . Width-in-millimeters
and height-in-millimeters can be used to determine the physical size and the aspect ratio.

The default-colormap is the one initially associated with the root window. Clients with minimal color requirements creating
windows of the same depth as the root may want to allocate from this map by default.

Black-pixel and white-pixel can be used in implementing a monochrome application. These pixel values are for permanently
allocated entries in the default-colormap. The actual RGB values may be settable on some screens and, in any case, may not
actually be black and white. The names are intended to convey the expected relative intensity of the colors.

The border of the root window is initially a pixmap filled with the black-pixel. The initial background of the root window is a
pixmap filled with some unspecified two-color pattern using black-pixel and white-pixel.

Min-installed-maps specifies the number of maps that can be guaranteed to be installed simultaneously (with InstallColormap),
regardless of the number of entries allocated in each map. Max-installed-maps specifies the maximum number of maps that might
possibly be installed simultaneously, depending on their allocations. Multiple static-visual colormaps with identical contents but
differing in resource ID should be considered as a single map for the purposes of this number. For the typical case of a single
hardware colormap, both values will be 1.

Backing-stores indicates when the server supports backing stores for this screen, although it may be storage limited in the number
of windows it can support at once. If save-unders is True , the server can support the save-under mode in CreateWindow and
ChangeWindowAttributes , although again it may be storage limited.

The current-input-events is what GetWindowAttributes would return for the all-event-masks for the root window.

Visual Information

The information that applies per visual-type is:

A given visual type might be listed for more than one depth or for more than one screen.

For PseudoColor , a pixel value indexes a colormap to produce independent RGB values; the RGB values can be changed
dynamically. GrayScale is treated in the same way as PseudoColor except which primary drives the screen is undefined;
thus, the client should always store the same value for red, green, and blue in colormaps. For DirectColor , a pixel value is
decomposed into separate RGB subfields, and each subfield separately indexes the colormap for the corresponding value. The
RGB values can be changed dynamically. TrueColor is treated in the same way as DirectColor except the colormap has
predefined read-only RGB values. These values are server-dependent but provide linear or near-linear increasing ramps in each
primary. StaticColor is treated in the same way as PseudoColor except the colormap has predefined read-only RGB values,
which are server-dependent. StaticGray is treated in the same way as StaticColor except the red, green, and blue values
are equal for any single pixel value, resulting in shades of gray. StaticGray with a two-entry colormap can be thought of as
monochrome.

The red-mask, green-mask, and blue-mask are only defined for DirectColor and TrueColor . Each has one contiguous set of
bits set to 1 with no intersections. Usually each mask has the same number of bits set to 1.

The bits-per-rgb-value specifies the log base 2 of the number of distinct color intensity values (individually) of red, green, and
blue. This number need not bear any relation to the number of colormap entries. Actual RGB values are always passed in the
protocol within a 16-bit spectrum, with 0 being minimum intensity and 65535 being the maximum intensity. On hardware that
provides a linear zero-based intensity ramp, the following relationship exists:

hw-intensity = protocol-intensity / (65536 / total-hw-intensities)

Colormap entries are indexed from 0. The colormap-entries defines the number of available colormap entries in a newly created
colormap. For DirectColor and TrueColor , this will usually be 2 to the power of the maximum number of bits set to 1 in
red-mask, green-mask, and blue-mask.

X Window System Protocol
15 / 159

Chapter 9

Requests

CreateWindow

wid, parent: WINDOW
class: { InputOutput , InputOnly , CopyFromParent }
depth: CARD8
visual: VISUALID or CopyFromParent
x, y: INT16
width, height, border-width: CARD16
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Alloc , Colormap , Cursor , IDChoice , Match , Pixmap , Value , Window

This request creates an unmapped window and assigns the identifier wid to it.

A class of CopyFromParent means the class is taken from the parent. A depth of zero for class InputOutput or Copy-
FromParent means the depth is taken from the parent. A visual of CopyFromParent means the visual type is taken from the
parent. For class InputOutput , the visual type and depth must be a combination supported for the screen (or a Match error
results). The depth need not be the same as the parent, but the parent must not be of class InputOnly (or a Match error results).
For class InputOnly , the depth must be zero (or a Match error results), and the visual must be one supported for the screen (or
a Match error results). However, the parent can have any depth and class.

The server essentially acts as if InputOnly windows do not exist for the purposes of graphics requests, exposure processing, and
VisibilityNotify events. An InputOnly window cannot be used as a drawable (as a source or destination for graphics requests).
InputOnly and InputOutput windows act identically in other respects-properties, grabs, input control, and so on.

The coordinate system has the X axis horizontal and the Y axis vertical with the origin [0, 0] at the upper-left corner. Coordinates
are integral, in terms of pixels, and coincide with pixel centers. Each window and pixmap has its own coordinate system. For a
window, the origin is inside the border at the inside, upper-left corner.

The x and y coordinates for the window are relative to the parent’s origin and specify the position of the upper-left outer corner
of the window (not the origin). The width and height specify the inside size (not including the border) and must be nonzero (or a
Value error results). The border-width for an InputOnly window must be zero (or a Match error results).

The window is placed on top in the stacking order with respect to siblings.

The value-mask and value-list specify attributes of the window that are to be explicitly initialized. The possible values are:

Attribute Type
background-pixmap PIXMAP or None or ParentRelative
background-pixel CARD32
border-pixmap PIXMAP or CopyFromParent
border-pixel CARD32
bit-gravity BITGRAVITY

X Window System Protocol
16 / 159

Attribute Type
win-gravity WINGRAVITY
backing-store { NotUseful, WhenMapped, Always }
backing-planes CARD32
backing-pixel CARD32
save-under BOOL
event-mask SETofEVENT
do-not-propagate-mask SETofDEVICEEVENT
override-redirect BOOL
colormap COLORMAP or CopyFromParent
cursor CURSOR or None

The default values when attributes are not explicitly initialized are:

Attribute Default
background-pixmap None
border-pixmap CopyFromParent
bit-gravity Forget
win-gravity NorthWest
backing-store NotUseful
backing-planes all ones
backing-pixel zero
save-under False
event-mask {} (empty set)
do-not-propagate-mask {} (empty set)
override-redirect False
colormap CopyFromParent
cursor None

Only the following attributes are defined for InputOnly windows:

• win-gravity

• event-mask

• do-not-propagate-mask

• override-redirect

• cursor

It is a Match error to specify any other attributes for InputOnly windows.

If background-pixmap is given, it overrides the default background-pixmap. The background pixmap and the window must
have the same root and the same depth (or a Match error results). Any size pixmap can be used, although some sizes may be
faster than others. If background None is specified, the window has no defined background. If background ParentRelative is
specified, the parent’s background is used, but the window must have the same depth as the parent (or a Match error results).
If the parent has background None , then the window will also have background None . A copy of the parent’s background is
not made. The parent’s background is reexamined each time the window background is required. If background-pixel is given,
it overrides the default background-pixmap and any background-pixmap given explicitly, and a pixmap of undefined size filled
with background-pixel is used for the background. Range checking is not performed on the background-pixel value; it is simply
truncated to the appropriate number of bits. For a ParentRelative background, the background tile origin always aligns with the
parent’s background tile origin. Otherwise, the background tile origin is always the window origin.

When no valid contents are available for regions of a window and the regions are either visible or the server is maintaining
backing store, the server automatically tiles the regions with the window’s background unless the window has a background of
None . If the background is None , the previous screen contents from other windows of the same depth as the window are simply

X Window System Protocol
17 / 159

left in place if the contents come from the parent of the window or an inferior of the parent; otherwise, the initial contents of the
exposed regions are undefined. Exposure events are then generated for the regions, even if the background is None .

The border tile origin is always the same as the background tile origin. If border-pixmap is given, it overrides the default border-
pixmap. The border pixmap and the window must have the same root and the same depth (or a Match error results). Any size
pixmap can be used, although some sizes may be faster than others. If CopyFromParent is given, the parent’s border pixmap
is copied (subsequent changes to the parent’s border attribute do not affect the child), but the window must have the same depth
as the parent (or a Match error results). The pixmap might be copied by sharing the same pixmap object between the child and
parent or by making a complete copy of the pixmap contents. If border-pixel is given, it overrides the default border-pixmap
and any border-pixmap given explicitly, and a pixmap of undefined size filled with border-pixel is used for the border. Range
checking is not performed on the border-pixel value; it is simply truncated to the appropriate number of bits.

Output to a window is always clipped to the inside of the window, so that the border is never affected.

The bit-gravity defines which region of the window should be retained if the window is resized, and win-gravity defines how the
window should be repositioned if the parent is resized (see ConfigureWindow request).

A backing-store of WhenMapped advises the server that maintaining contents of obscured regions when the window is mapped
would be beneficial. A backing-store of Always advises the server that maintaining contents even when the window is unmapped
would be beneficial. In this case, the server may generate an exposure event when the window is created. A value of NotUseful
advises the server that maintaining contents is unnecessary, although a server may still choose to maintain contents while the
window is mapped. Note that if the server maintains contents, then the server should maintain complete contents not just the
region within the parent boundaries, even if the window is larger than its parent. While the server maintains contents, exposure
events will not normally be generated, but the server may stop maintaining contents at any time.

If save-under is True , the server is advised that when this window is mapped, saving the contents of windows it obscures would
be beneficial.

When the contents of obscured regions of a window are being maintained, regions obscured by noninferior windows are included
in the destination (and source, when the window is the source) of graphics requests, but regions obscured by inferior windows
are not included.

The backing-planes indicates (with bits set to 1) which bit planes of the window hold dynamic data that must be preserved in
backing-stores and during save-unders. The backing-pixel specifies what value to use in planes not covered by backing-planes.
The server is free to save only the specified bit planes in the backing-store or save-under and regenerate the remaining planes
with the specified pixel value. Any bits beyond the specified depth of the window in these values are simply ignored.

The event-mask defines which events the client is interested in for this window (or for some event types, inferiors of the window).
The do-not-propagate-mask defines which events should not be propagated to ancestor windows when no client has the event
type selected in this window.

The override-redirect specifies whether map and configure requests on this window should override a SubstructureRedirect on
the parent, typically to inform a window manager not to tamper with the window.

The colormap specifies the colormap that best reflects the true colors of the window. Servers capable of supporting multiple
hardware colormaps may use this information, and window managers may use it for InstallColormap requests. The colormap
must have the same visual type and root as the window (or a Match error results). If CopyFromParent is specified, the parent’s
colormap is copied (subsequent changes to the parent’s colormap attribute do not affect the child). However, the window must
have the same visual type as the parent (or a Match error results), and the parent must not have a colormap of None (or a Match
error results). For an explanation of None , see FreeColormap request. The colormap is copied by sharing the colormap object
between the child and the parent, not by making a complete copy of the colormap contents.

If a cursor is specified, it will be used whenever the pointer is in the window. If None is specified, the parent’s cursor will be
used when the pointer is in the window, and any change in the parent’s cursor will cause an immediate change in the displayed
cursor.

This request generates a CreateNotify event.

The background and border pixmaps and the cursor may be freed immediately if no further explicit references to them are to be
made.

Subsequent drawing into the background or border pixmap has an undefined effect on the window state. The server might or
might not make a copy of the pixmap.

ChangeWindowAttributes

X Window System Protocol
18 / 159

window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Access , Colormap , Cursor , Match , Pixmap , Value , Window

The value-mask and value-list specify which attributes are to be changed. The values and restrictions are the same as for
CreateWindow .

Setting a new background, whether by background-pixmap or background-pixel, overrides any previous background. Setting a
new border, whether by border-pixel or border-pixmap, overrides any previous border.

Changing the background does not cause the window contents to be changed. Setting the border or changing the background
such that the border tile origin changes causes the border to be repainted. Changing the background of a root window to None or
ParentRelative restores the default background pixmap. Changing the border of a root window to CopyFromParent restores
the default border pixmap.

Changing the win-gravity does not affect the current position of the window.

Changing the backing-store of an obscured window to WhenMapped or Always or changing the backing-planes, backing-pixel,
or save-under of a mapped window may have no immediate effect.

Multiple clients can select input on the same window; their event-masks are disjoint. When an event is generated, it will be
reported to all interested clients. However, only one client at a time can select for SubstructureRedirect , only one client at
a time can select for ResizeRedirect , and only one client at a time can select for ButtonPress . An attempt to violate these
restrictions results in an Access error.

There is only one do-not-propagate-mask for a window, not one per client.

Changing the colormap of a window (by defining a new map, not by changing the contents of the existing map) generates
a ColormapNotify event. Changing the colormap of a visible window might have no immediate effect on the screen (see
InstallColormap request).

Changing the cursor of a root window to None restores the default cursor.

The order in which attributes are verified and altered is server-dependent. If an error is generated, a subset of the attributes may
have been altered.

GetWindowAttributes

window: WINDOW
->
visual: VISUALID
class: { InputOutput , InputOnly }
bit-gravity: BITGRAVITY
win-gravity: WINGRAVITY
backing-store: { NotUseful , WhenMapped , Always }
backing-planes: CARD32
backing-pixel: CARD32
save-under: BOOL
colormap: COLORMAP or None
map-is-installed: BOOL
map-state: { Unmapped , Unviewable , Viewable }
all-event-masks, your-event-mask: SETofEVENT
do-not-propagate-mask: SETofDEVICEEVENT
override-redirect: BOOL
Errors: Window

This request returns the current attributes of the window. A window is Unviewable if it is mapped but some ancestor is
unmapped. All-event-masks is the inclusive-OR of all event masks selected on the window by clients. Your-event-mask is the

X Window System Protocol
19 / 159

event mask selected by the querying client.

DestroyWindow

window: WINDOW
Errors: Window

If the argument window is mapped, an UnmapWindow request is performed automatically. The window and all inferiors are
then destroyed, and a DestroyNotify event is generated for each window. The ordering of the DestroyNotify events is such that
for any given window, DestroyNotify is generated on all inferiors of the window before being generated on the window itself.
The ordering among siblings and across subhierarchies is not otherwise constrained.

Normal exposure processing on formerly obscured windows is performed.

If the window is a root window, this request has no effect.

DestroySubwindows

window: WINDOW
Errors: Window

This request performs a DestroyWindow request on all children of the window, in bottom-to-top stacking order.

ChangeSaveSet

window: WINDOW
mode: { Insert , Delete }
Errors: Match , Value , Window

This request adds or removes the specified window from the client’s save-set. The window must have been created by some other
client (or a Match error results). For further information about the use of the save-set, see section 10.

When windows are destroyed, the server automatically removes them from the save-set.

ReparentWindow

window, parent: WINDOW
x, y: INT16
Errors: Match , Window

If the window is mapped, an UnmapWindow request is performed automatically first. The window is then removed from its
current position in the hierarchy and is inserted as a child of the specified parent. The x and y coordinates are relative to the
parent’s origin and specify the new position of the upper-left outer corner of the window. The window is placed on top in the
stacking order with respect to siblings. A ReparentNotify event is then generated. The override-redirect attribute of the window
is passed on in this event; a value of True indicates that a window manager should not tamper with this window. Finally, if the
window was originally mapped, a MapWindow request is performed automatically.

Normal exposure processing on formerly obscured windows is performed. The server might not generate exposure events for
regions from the initial unmap that are immediately obscured by the final map.

A Match error is generated if: The new parent is not on the same screen as the old parent. The new parent is the window
itself or an inferior of the window. The new parent is InputOnly , and the window is not. The window has a ParentRelative
background, and the new parent is not the same depth as the window.

MapWindow

window: WINDOW
Errors: Window

X Window System Protocol
20 / 159

If the window is already mapped, this request has no effect.

If the override-redirect attribute of the window is False and some other client has selected SubstructureRedirect on the parent,
then a MapRequest event is generated, but the window remains unmapped. Otherwise, the window is mapped, and a MapNotify
event is generated.

If the window is now viewable and its contents have been discarded, the window is tiled with its background (if no background
is defined, the existing screen contents are not altered), and zero or more exposure events are generated. If a backing-store has
been maintained while the window was unmapped, no exposure events are generated. If a backing-store will now be maintained,
a full-window exposure is always generated. Otherwise, only visible regions may be reported. Similar tiling and exposure take
place for any newly viewable inferiors.

MapSubwindows

window: WINDOW
Errors: Window

This request performs a MapWindow request on all unmapped children of the window, in top-to-bottom stacking order.

UnmapWindow

window: WINDOW
Errors: Window

If the window is already unmapped, this request has no effect. Otherwise, the window is unmapped, and an UnmapNotify event
is generated. Normal exposure processing on formerly obscured windows is performed.

UnmapSubwindows

window: WINDOW
Errors: Window

This request performs an UnmapWindow request on all mapped children of the window, in bottom-to-top stacking order.

ConfigureWindow

window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Match , Value , Window

This request changes the configuration of the window. The value-mask and value-list specify which values are to be given. The
possible values are:

Attribute Type
x INT16
y INT16
width CARD16
height CARD16
border-width CARD16
sibling WINDOW
stack-mode { Above, Below, TopIf, BottomIf, Opposite }

The x and y coordinates are relative to the parent’s origin and specify the position of the upper-left outer corner of the window.
The width and height specify the inside size, not including the border, and must be nonzero (or a Value error results). Those
values not specified are taken from the existing geometry of the window. Note that changing just the border-width leaves the
outer-left corner of the window in a fixed position but moves the absolute position of the window’s origin. It is a Match error to

X Window System Protocol
21 / 159

attempt to make the border-width of an InputOnly window nonzero.

If the override-redirect attribute of the window is False and some other client has selected SubstructureRedirect on the parent,
a ConfigureRequest event is generated, and no further processing is performed. Otherwise, the following is performed:

If some other client has selected ResizeRedirect on the window and the inside width or height of the window is being changed,
a ResizeRequest event is generated, and the current inside width and height are used instead. Note that the override-redirect
attribute of the window has no effect on ResizeRedirect and that SubstructureRedirect on the parent has precedence over
ResizeRedirect on the window.

The geometry of the window is changed as specified, the window is restacked among siblings, and a ConfigureNotify event is
generated if the state of the window actually changes. If the inside width or height of the window has actually changed, then
children of the window are affected, according to their win-gravity. Exposure processing is performed on formerly obscured
windows (including the window itself and its inferiors if regions of them were obscured but now are not). Exposure processing
is also performed on any new regions of the window (as a result of increasing the width or height) and on any regions where
window contents are lost.

If the inside width or height of a window is not changed but the window is moved or its border is changed, then the contents
of the window are not lost but move with the window. Changing the inside width or height of the window causes its contents
to be moved or lost, depending on the bit-gravity of the window. It also causes children to be reconfigured, depending on their
win-gravity. For a change of width and height of W and H, we define the [x, y] pairs as:

Direction Deltas
NorthWest [0, 0]
North [W/2, 0]
NorthEast [W, 0]
West [0, H/2]
Center [W/2, H/2]
East [W, H/2]
SouthWest [0, H]
South [W/2, H]
SouthEast [W, H]

When a window with one of these bit-gravities is resized, the corresponding pair defines the change in position of each pixel in
the window. When a window with one of these win-gravities has its parent window resized, the corresponding pair defines the
change in position of the window within the parent. This repositioning generates a GravityNotify event. GravityNotify events
are generated after the ConfigureNotify event is generated.

A gravity of Static indicates that the contents or origin should not move relative to the origin of the root window. If the change
in size of the window is coupled with a change in position of [X, Y], then for bit-gravity the change in position of each pixel is
[-X, -Y] and for win-gravity the change in position of a child when its parent is so resized is [-X, -Y]. Note that Static gravity
still only takes effect when the width or height of the window is changed, not when the window is simply moved.

A bit-gravity of Forget indicates that the window contents are always discarded after a size change, even if backing-store or
save-under has been requested. The window is tiled with its background (except, if no background is defined, the existing screen
contents are not altered) and zero or more exposure events are generated.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A server is permitted to ignore the specified
bit-gravity and use Forget instead.

A win-gravity of Unmap is like NorthWest , but the child is also unmapped when the parent is resized, and an UnmapNotify
event is generated. UnmapNotify events are generated after the ConfigureNotify event is generated.

If a sibling and a stack-mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.
Below The window is placed just below the sibling.

TopIf If the sibling occludes the window, then the window is
placed at the top of the stack.

BottomIf If the window occludes the sibling, then the window is
placed at the bottom of the stack.

X Window System Protocol
22 / 159

Opposite

If the sibling occludes the window, then the window is
placed at the top of the stack. Otherwise, if the window
occludes the sibling, then the window is placed at the
bottom of the stack.

If a stack-mode is specified but no sibling is specified, the window is restacked as follows:

Above The window is placed at the top of the stack.
Below The window is placed at the bottom of the stack.

TopIf If any sibling occludes the window, then the window is
placed at the top of the stack.

BottomIf If the window occludes any sibling, then the window is
placed at the bottom of the stack.

Opposite

If any sibling occludes the window, then the window is
placed at the top of the stack. Otherwise, if the window
occludes any sibling, then the window is placed at the
bottom of the stack.

It is a Match error if a sibling is specified without a stack-mode or if the window is not actually a sibling.

Note that the computations for BottomIf, TopIf, and Opposite are performed with respect to the window’s final geometry (as
controlled by the other arguments to the request), not to its initial geometry.

Attempts to configure a root window have no effect.

CirculateWindow

window: WINDOW
direction: { RaiseLowest , LowerHighest }
Errors: Value , Window

If some other client has selected SubstructureRedirect on the window, then a CirculateRequest event is generated, and no
further processing is performed. Otherwise, the following is performed, and then a CirculateNotify event is generated if the
window is actually restacked.

For RaiseLowest , CirculateWindow raises the lowest mapped child (if any) that is occluded by another child to the top of
the stack. For LowerHighest , CirculateWindow lowers the highest mapped child (if any) that occludes another child to the
bottom of the stack. Exposure processing is performed on formerly obscured windows.

GetGeometry

drawable: DRAWABLE
->
root: WINDOW
depth: CARD8
x, y: INT16
width, height, border-width: CARD16
Errors: Drawable

This request returns the root and current geometry of the drawable. The depth is the number of bits per pixel for the object. The
x, y, and border-width will always be zero for pixmaps. For a window, the x and y coordinates specify the upper-left outer corner
of the window relative to its parent’s origin, and the width and height specify the inside size, not including the border.

It is legal to pass an InputOnly window as a drawable to this request.

QueryTree

window: WINDOW
->

X Window System Protocol
23 / 159

root: WINDOW
parent: WINDOW or None
children: LISTofWINDOW
Errors: Window

This request returns the root, the parent, and the children of the window. The children are listed in bottom-to-top stacking order.

InternAtom

name: STRING8
only-if-exists: BOOL
->
atom: ATOM or None
Errors: Alloc , Value

This request returns the atom for the given name. If only-if-exists is False , then the atom is created if it does not exist. The
string should use the ISO Latin-1 encoding. Uppercase and lowercase matter.

The lifetime of an atom is not tied to the interning client. Atoms remain defined until server reset (see section 10).

GetAtomName

atom: ATOM
->
name: STRING8
Errors: Atom

This request returns the name for the given atom.

ChangeProperty

window: WINDOW
property, type: ATOM
format: {8, 16, 32}
mode: { Replace , Prepend , Append }
data: LISTofINT8 or LISTofINT16 or LISTofINT32
Errors: Alloc , Atom , Match , Value , Window

This request alters the property for the specified window. The type is uninterpreted by the server. The format specifies whether
the data should be viewed as a list of 8-bit, 16-bit, or 32-bit quantities so that the server can correctly byte-swap as necessary.

If the mode is Replace , the previous property value is discarded. If the mode is Prepend or Append , then the type and format
must match the existing property value (or a Match error results). If the property is undefined, it is treated as defined with the
correct type and format with zero-length data. For Prepend , the data is tacked on to the beginning of the existing data, and for
Append , it is tacked on to the end of the existing data.

This request generates a PropertyNotify event on the window.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly deleted, until the window is destroyed,
or until server reset (see section 10).

The maximum size of a property is server-dependent and may vary dynamically.

DeleteProperty

window: WINDOW
property: ATOM
Errors: Atom , Window

X Window System Protocol
24 / 159

This request deletes the property from the specified window if the property exists and generates a PropertyNotify event on the
window unless the property does not exist.

GetProperty

window: WINDOW
property: ATOM
type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL
->
type: ATOM or None
format: {0, 8, 16, 32}
bytes-after: CARD32
value: LISTofINT8 or LISTofINT16 or LISTofINT32
Errors: Atom , Value , Window

If the specified property does not exist for the specified window, then the return type is None , the format and bytes-after are
zero, and the value is empty. The delete argument is ignored in this case. If the specified property exists but its type does not
match the specified type, then the return type is the actual type of the property, the format is the actual format of the property
(never zero), the bytes-after is the length of the property in bytes (even if the format is 16 or 32), and the value is empty. The
delete argument is ignored in this case. If the specified property exists and either AnyPropertyType is specified or the specified
type matches the actual type of the property, then the return type is the actual type of the property, the format is the actual format
of the property (never zero), and the bytes-after and value are as follows, given: N = actual length of the stored property in bytes
\ \ \ \ (even if the format is 16 or 32) I = 4 * long-offset T = N - I L = MINIMUM(T, 4 * long-length) A = N - (I + L)

The returned value starts at byte index I in the property (indexing from 0), and its length in bytes is L. However, it is a Value
error if long-offset is given such that L is negative. The value of bytes-after is A, giving the number of trailing unread bytes in the
stored property. If delete is True and the bytes-after is zero, the property is also deleted from the window, and a PropertyNotify
event is generated on the window.

RotateProperties

window: WINDOW
delta: INT16
properties: LISTofATOM
Errors: Atom , Match , Window

If the property names in the list are viewed as being numbered starting from zero, and there are N property names in the list, then
the value associated with property name I becomes the value associated with property name (I + delta) mod N, for all I from zero
to N - 1. The effect is to rotate the states by delta places around the virtual ring of property names (right for positive delta, left
for negative delta).

If delta mod N is nonzero, a PropertyNotify event is generated for each property in the order listed.

If an atom occurs more than once in the list or no property with that name is defined for the window, a Match error is generated.
If an Atom or Match error is generated, no properties are changed.

ListProperties

window: WINDOW
->
atoms: LISTofATOM
Errors: Window

This request returns the atoms of properties currently defined on the window.

SetSelectionOwner

X Window System Protocol
25 / 159

selection: ATOM
owner: WINDOW or None
time: TIMESTAMP or CurrentTime
Errors: Atom , Window

This request changes the owner, owner window, and last-change time of the specified selection. This request has no effect if
the specified time is earlier than the current last-change time of the specified selection or is later than the current server time.
Otherwise, the last-change time is set to the specified time with CurrentTime replaced by the current server time. If the owner
window is specified as None , then the owner of the selection becomes None (that is, no owner). Otherwise, the owner of the
selection becomes the client executing the request. If the new owner (whether a client or None) is not the same as the current
owner and the current owner is not None , then the current owner is sent a SelectionClear event.

If the client that is the owner of a selection is later terminated (that is, its connection is closed) or if the owner window it has
specified in the request is later destroyed, then the owner of the selection automatically reverts to None , but the last-change time
is not affected.

The selection atom is uninterpreted by the server. The owner window is returned by the GetSelectionOwner request and is
reported in SelectionRequest and SelectionClear events.

Selections are global to the server.

GetSelectionOwner

selection: ATOM
->
owner: WINDOW or None
Errors: Atom

This request returns the current owner window of the specified selection, if any. If None is returned, then there is no owner for
the selection.

ConvertSelection

selection, target: ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime
Errors: Atom , Window

If the specified selection has an owner, the server sends a SelectionRequest event to that owner. If no owner for the specified
selection exists, the server generates a SelectionNotify event to the requestor with property None . The arguments are passed
on unchanged in either of the events.

SendEvent

destination: WINDOW or PointerWindow or InputFocus
propagate: BOOL
event-mask: SETofEVENT
event: <normal-event-format>
Errors: Value , Window

If PointerWindow is specified, destination is replaced with the window that the pointer is in. If InputFocus is specified and
the focus window contains the pointer, destination is replaced with the window that the pointer is in. Otherwise, destination is
replaced with the focus window.

If the event-mask is the empty set, then the event is sent to the client that created the destination window. If that client no longer
exists, no event is sent.

If propagate is False , then the event is sent to every client selecting on destination any of the event types in event-mask.

X Window System Protocol
26 / 159

If propagate is True and no clients have selected on destination any of the event types in event-mask, then destination is replaced
with the closest ancestor of destination for which some client has selected a type in event-mask and no intervening window
has that type in its do-not-propagate-mask. If no such window exists or if the window is an ancestor of the focus window and
InputFocus was originally specified as the destination, then the event is not sent to any clients. Otherwise, the event is reported
to every client selecting on the final destination any of the types specified in event-mask.

The event code must be one of the core events or one of the events defined by an extension (or a Value error results) so that the
server can correctly byte-swap the contents as necessary. The contents of the event are otherwise unaltered and unchecked by the
server except to force on the most significant bit of the event code and to set the sequence number in the event correctly.

Active grabs are ignored for this request.

GrabPointer

grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: { Synchronous , Asynchronous }
confine-to: WINDOW or None
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime
->
status: { Success , AlreadyGrabbed , Frozen , InvalidTime , NotViewable }
Errors: Cursor , Value , Window

This request actively grabs control of the pointer. Further pointer events are only reported to the grabbing client. The request
overrides any active pointer grab by this client.

If owner-events is False , all generated pointer events are reported with respect to grab-window and are only reported if selected
by event-mask. If owner-events is True and a generated pointer event would normally be reported to this client, it is reported
normally. Otherwise, the event is reported with respect to the grab-window and is only reported if selected by event-mask. For
either value of owner-events, unreported events are simply discarded.

If pointer-mode is Asynchronous , pointer event processing continues normally. If the pointer is currently frozen by this client,
then processing of pointer events is resumed. If pointer-mode is Synchronous , the state of the pointer (as seen by means of the
protocol) appears to freeze, and no further pointer events are generated by the server until the grabbing client issues a releasing
AllowEvents request or until the pointer grab is released. Actual pointer changes are not lost while the pointer is frozen. They
are simply queued for later processing.

If keyboard-mode is Asynchronous , keyboard event processing is unaffected by activation of the grab. If keyboard-mode is
Synchronous , the state of the keyboard (as seen by means of the protocol) appears to freeze, and no further keyboard events
are generated by the server until the grabbing client issues a releasing AllowEvents request or until the pointer grab is released.
Actual keyboard changes are not lost while the keyboard is frozen. They are simply queued for later processing.

If a cursor is specified, then it is displayed regardless of what window the pointer is in. If no cursor is specified, then when the
pointer is in grab-window or one of its subwindows, the normal cursor for that window is displayed. Otherwise, the cursor for
grab-window is displayed.

If a confine-to window is specified, then the pointer will be restricted to stay contained in that window. The confine-to window
need have no relationship to the grab-window. If the pointer is not initially in the confine-to window, then it is warped automati-
cally to the closest edge (and enter/leave events are generated normally) just before the grab activates. If the confine-to window
is subsequently reconfigured, the pointer will be warped automatically as necessary to keep it contained in the window.

This request generates EnterNotify and LeaveNotify events.

The request fails with status AlreadyGrabbed if the pointer is actively grabbed by some other client. The request fails with
status Frozen if the pointer is frozen by an active grab of another client. The request fails with status NotViewable if grab-
window or confine-to window is not viewable or if the confine-to window lies completely outside the boundaries of the root
window. The request fails with status InvalidTime if the specified time is earlier than the last-pointer-grab time or later than the
current server time. Otherwise, the last-pointer-grab time is set to the specified time, with CurrentTime replaced by the current
server time.

UngrabPointer

X Window System Protocol
27 / 159

time: TIMESTAMP or CurrentTime

This request releases the pointer if this client has it actively grabbed (from either GrabPointer or GrabButton or from a normal
button press) and releases any queued events. The request has no effect if the specified time is earlier than the last-pointer-grab
time or is later than the current server time.

This request generates EnterNotify and LeaveNotify events.

An UngrabPointer request is performed automatically if the event window or confine-to window for an active pointer grab
becomes not viewable or if window reconfiguration causes the confine-to window to lie completely outside the boundaries of the
root window.

GrabButton

modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: { Synchronous , Asynchronous }
confine-to: WINDOW or None
cursor: CURSOR or None
Errors: Access , Cursor , Value , Window

This request establishes a passive grab. In the future, the pointer is actively grabbed as described in GrabPointer , the last-
pointer-grab time is set to the time at which the button was pressed (as transmitted in the ButtonPress event), and the Button-
Press event is reported if all of the following conditions are true: The pointer is not grabbed and the specified button is logically
pressed when the specified modifier keys are logically down, and no other buttons or modifier keys are logically down. The grab-
window contains the pointer. The confine-to window (if any) is viewable. A passive grab on the same button/key combination
does not exist on any ancestor of grab-window.

The interpretation of the remaining arguments is the same as for GrabPointer . The active grab is terminated automatically when
the logical state of the pointer has all buttons released, independent of the logical state of modifier keys. Note that the logical
state of a device (as seen by means of the protocol) may lag the physical state if device event processing is frozen.

This request overrides all previous passive grabs by the same client on the same button/key combinations on the same window. A
modifier of AnyModifier is equivalent to issuing the request for all possible modifier combinations (including the combination
of no modifiers). It is not required that all specified modifiers have currently assigned keycodes. A button of AnyButton is
equivalent to issuing the request for all possible buttons. Otherwise, it is not required that the button specified currently be
assigned to a physical button.

An Access error is generated if some other client has already issued a GrabButton request with the same button/key combination
on the same window. When using AnyModifier or AnyButton , the request fails completely (no grabs are established), and an
Access error is generated if there is a conflicting grab for any combination. The request has no effect on an active grab.

UngrabButton

modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW
Errors: Value , Window

This request releases the passive button/key combination on the specified window if it was grabbed by this client. A modifiers
argument of AnyModifier is equivalent to issuing the request for all possible modifier combinations (including the combination
of no modifiers). A button of AnyButton is equivalent to issuing the request for all possible buttons. The request has no effect
on an active grab.

ChangeActivePointerGrab

event-mask: SETofPOINTEREVENT

X Window System Protocol
28 / 159

cursor: CURSOR or None
time: TIMESTAMP or CurrentTime
Errors: Cursor , Value

This request changes the specified dynamic parameters if the pointer is actively grabbed by the client and the specified time is no
earlier than the last-pointer-grab time and no later than the current server time. The interpretation of event-mask and cursor are
the same as in GrabPointer . This request has no effect on the parameters of any passive grabs established with GrabButton .

GrabKeyboard

grab-window: WINDOW
owner-events: BOOL
pointer-mode, keyboard-mode: { Synchronous , Asynchronous }
time: TIMESTAMP or CurrentTime
->
status: { Success , AlreadyGrabbed , Frozen , InvalidTime , NotViewable }
Errors: Value , Window

This request actively grabs control of the keyboard. Further key events are reported only to the grabbing client. This request
overrides any active keyboard grab by this client.

If owner-events is False , all generated key events are reported with respect to grab-window. If owner-events is True and if
a generated key event would normally be reported to this client, it is reported normally. Otherwise, the event is reported with
respect to the grab-window. Both KeyPress and KeyRelease events are always reported, independent of any event selection
made by the client.

If keyboard-mode is Asynchronous , keyboard event processing continues normally. If the keyboard is currently frozen by this
client, then processing of keyboard events is resumed. If keyboard-mode is Synchronous , the state of the keyboard (as seen by
means of the protocol) appears to freeze. No further keyboard events are generated by the server until the grabbing client issues
a releasing AllowEvents request or until the keyboard grab is released. Actual keyboard changes are not lost while the keyboard
is frozen. They are simply queued for later processing.

If pointer-mode is Asynchronous , pointer event processing is unaffected by activation of the grab. If pointer-mode is Syn-
chronous , the state of the pointer (as seen by means of the protocol) appears to freeze. No further pointer events are generated
by the server until the grabbing client issues a releasing AllowEvents request or until the keyboard grab is released. Actual
pointer changes are not lost while the pointer is frozen. They are simply queued for later processing.

This request generates FocusIn and FocusOut events.

The request fails with status AlreadyGrabbed if the keyboard is actively grabbed by some other client. The request fails with
status Frozen if the keyboard is frozen by an active grab of another client. The request fails with status NotViewable if grab-
window is not viewable. The request fails with status InvalidTime if the specified time is earlier than the last-keyboard-grab
time or later than the current server time. Otherwise, the last-keyboard-grab time is set to the specified time with CurrentTime
replaced by the current server time.

UngrabKeyboard

time: TIMESTAMP or CurrentTime

This request releases the keyboard if this client has it actively grabbed (as a result of either GrabKeyboard or GrabKey) and
releases any queued events. The request has no effect if the specified time is earlier than the last-keyboard-grab time or is later
than the current server time.

This request generates FocusIn and FocusOut events.

An UngrabKeyboard is performed automatically if the event window for an active keyboard grab becomes not viewable.

GrabKey

key: KEYCODE or AnyKey

X Window System Protocol
29 / 159

modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW
owner-events: BOOL
pointer-mode, keyboard-mode: { Synchronous , Asynchronous }
Errors: Access , Value , Window

This request establishes a passive grab on the keyboard. In the future, the keyboard is actively grabbed as described in GrabKey-
board , the last-keyboard-grab time is set to the time at which the key was pressed (as transmitted in the KeyPress event),
and the KeyPress event is reported if all of the following conditions are true: The keyboard is not grabbed and the specified
key (which can itself be a modifier key) is logically pressed when the specified modifier keys are logically down, and no other
modifier keys are logically down. Either the grab-window is an ancestor of (or is) the focus window, or the grab-window is a
descendent of the focus window and contains the pointer. A passive grab on the same key combination does not exist on any
ancestor of grab-window.

The interpretation of the remaining arguments is the same as for GrabKeyboard . The active grab is terminated automatically
when the logical state of the keyboard has the specified key released, independent of the logical state of modifier keys. Note that
the logical state of a device (as seen by means of the protocol) may lag the physical state if device event processing is frozen.

This request overrides all previous passive grabs by the same client on the same key combinations on the same window. A
modifier of AnyModifier is equivalent to issuing the request for all possible modifier combinations (including the combination
of no modifiers). It is not required that all modifiers specified have currently assigned keycodes. A key of AnyKey is equivalent
to issuing the request for all possible keycodes. Otherwise, the key must be in the range specified by min-keycode and max-
keycode in the connection setup (or a Value error results).

An Access error is generated if some other client has issued a GrabKey with the same key combination on the same window.
When using AnyModifier or AnyKey , the request fails completely (no grabs are established), and an Access error is generated
if there is a conflicting grab for any combination.

UngrabKey

key: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW
Errors: Value , Window

This request releases the key combination on the specified window if it was grabbed by this client. A modifiers argument
of AnyModifier is equivalent to issuing the request for all possible modifier combinations (including the combination of no
modifiers). A key of AnyKey is equivalent to issuing the request for all possible keycodes. This request has no effect on an
active grab.

AllowEvents

mode: { AsyncPointer , SyncPointer , ReplayPointer , AsyncKeyboard ,
SyncKeyboard , ReplayKeyboard , AsyncBoth , SyncBoth }
time: TIMESTAMP or CurrentTime
Errors: Value

This request releases some queued events if the client has caused a device to freeze. The request has no effect if the specified
time is earlier than the last-grab time of the most recent active grab for the client or if the specified time is later than the current
server time.

For AsyncPointer , if the pointer is frozen by the client, pointer event processing continues normally. If the pointer is frozen
twice by the client on behalf of two separate grabs, AsyncPointer thaws for both. AsyncPointer has no effect if the pointer is
not frozen by the client, but the pointer need not be grabbed by the client.

For SyncPointer , if the pointer is frozen and actively grabbed by the client, pointer event processing continues normally until the
next ButtonPress or ButtonRelease event is reported to the client, at which time the pointer again appears to freeze. However,
if the reported event causes the pointer grab to be released, then the pointer does not freeze. SyncPointer has no effect if the
pointer is not frozen by the client or if the pointer is not grabbed by the client.

X Window System Protocol
30 / 159

For ReplayPointer , if the pointer is actively grabbed by the client and is frozen as the result of an event having been sent to
the client (either from the activation of a GrabButton or from a previous AllowEvents with mode SyncPointer but not from a
GrabPointer), then the pointer grab is released and that event is completely reprocessed, this time ignoring any passive grabs
at or above (towards the root) the grab-window of the grab just released. The request has no effect if the pointer is not grabbed
by the client or if the pointer is not frozen as the result of an event.

For AsyncKeyboard , if the keyboard is frozen by the client, keyboard event processing continues normally. If the keyboard is
frozen twice by the client on behalf of two separate grabs, AsyncKeyboard thaws for both. AsyncKeyboard has no effect if
the keyboard is not frozen by the client, but the keyboard need not be grabbed by the client.

For SyncKeyboard , if the keyboard is frozen and actively grabbed by the client, keyboard event processing continues normally
until the next KeyPress or KeyRelease event is reported to the client, at which time the keyboard again appears to freeze.
However, if the reported event causes the keyboard grab to be released, then the keyboard does not freeze. SyncKeyboard has
no effect if the keyboard is not frozen by the client or if the keyboard is not grabbed by the client.

For ReplayKeyboard , if the keyboard is actively grabbed by the client and is frozen as the result of an event having been sent
to the client (either from the activation of a GrabKey or from a previous AllowEvents with mode SyncKeyboard but not from
a GrabKeyboard), then the keyboard grab is released and that event is completely reprocessed, this time ignoring any passive
grabs at or above (towards the root) the grab-window of the grab just released. The request has no effect if the keyboard is not
grabbed by the client or if the keyboard is not frozen as the result of an event.

For SyncBoth , if both pointer and keyboard are frozen by the client, event processing (for both devices) continues normally until
the next ButtonPress , ButtonRelease , KeyPress , or KeyRelease event is reported to the client for a grabbed device (button
event for the pointer, key event for the keyboard), at which time the devices again appear to freeze. However, if the reported event
causes the grab to be released, then the devices do not freeze (but if the other device is still grabbed, then a subsequent event for
it will still cause both devices to freeze). SyncBoth has no effect unless both pointer and keyboard are frozen by the client. If
the pointer or keyboard is frozen twice by the client on behalf of two separate grabs, SyncBoth thaws for both (but a subsequent
freeze for SyncBoth will only freeze each device once).

For AsyncBoth , if the pointer and the keyboard are frozen by the client, event processing for both devices continues normally.
If a device is frozen twice by the client on behalf of two separate grabs, AsyncBoth thaws for both. AsyncBoth has no effect
unless both pointer and keyboard are frozen by the client.

AsyncPointer , SyncPointer , and ReplayPointer have no effect on processing of keyboard events. AsyncKeyboard ,
SyncKeyboard , and ReplayKeyboard have no effect on processing of pointer events.

It is possible for both a pointer grab and a keyboard grab to be active simultaneously (by the same or different clients). When
a device is frozen on behalf of either grab, no event processing is performed for the device. It is possible for a single device to
be frozen because of both grabs. In this case, the freeze must be released on behalf of both grabs before events can again be
processed. If a device is frozen twice by a single client, then a single AllowEvents releases both.

GrabServer

This request disables processing of requests and close-downs on all connections other than the one this request arrived on.

UngrabServer

This request restarts processing of requests and close-downs on other connections.

QueryPointer

window: WINDOW
->
root: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, win-x, win-y: INT16
mask: SETofKEYBUTMASK
Errors: Window

The root window the pointer is logically on and the pointer coordinates relative to the root’s origin are returned. If same-screen
is False , then the pointer is not on the same screen as the argument window, child is None , and win-x and win-y are zero. If
same-screen is True , then win-x and win-y are the pointer coordinates relative to the argument window’s origin, and child is the

X Window System Protocol
31 / 159

child containing the pointer, if any. The current logical state of the modifier keys and the buttons are also returned. Note that the
logical state of a device (as seen by means of the protocol) may lag the physical state if device event processing is frozen.

GetMotionEvents

start, stop: TIMESTAMP or CurrentTime
window: WINDOW
->
events: LISTofTIMECOORD
where:
TIMECOORD: [x, y: INT16
time: TIMESTAMP]
Errors: Window

This request returns all events in the motion history buffer that fall between the specified start and stop times (inclusive) and that
have coordinates that lie within (including borders) the specified window at its present placement. The x and y coordinates are
reported relative to the origin of the window.

If the start time is later than the stop time or if the start time is in the future, no events are returned. If the stop time is in the
future, it is equivalent to specifying CurrentTime .

TranslateCoordinates

src-window, dst-window: WINDOW
src-x, src-y: INT16
->
same-screen: BOOL
child: WINDOW or None
dst-x, dst-y: INT16
Errors: Window

The src-x and src-y coordinates are taken relative to src-window’s origin and are returned as dst-x and dst-y coordinates relative
to dst-window’s origin. If same-screen is False , then src-window and dst-window are on different screens, and dst-x and dst-y
are zero. If the coordinates are contained in a mapped child of dst-window, then that child is returned.

WarpPointer

src-window: WINDOW or None
dst-window: WINDOW or None
src-x, src-y: INT16
src-width, src-height: CARD16
dst-x, dst-y: INT16
Errors: Window

If dst-window is None , this request moves the pointer by offsets [dst-x, dst-y] relative to the current position of the pointer. If
dst-window is a window, this request moves the pointer to [dst-x, dst-y] relative to dst-window’s origin. However, if src-window
is not None , the move only takes place if src-window contains the pointer and the pointer is contained in the specified rectangle
of src-window.

The src-x and src-y coordinates are relative to src-window’s origin. If src-height is zero, it is replaced with the current height of
src-window minus src-y. If src-width is zero, it is replaced with the current width of src-window minus src-x.

This request cannot be used to move the pointer outside the confine-to window of an active pointer grab. An attempt will only
move the pointer as far as the closest edge of the confine-to window.

This request will generate events just as if the user had instantaneously moved the pointer.

SetInputFocus

focus: WINDOW or PointerRoot or None

X Window System Protocol
32 / 159

revert-to: { Parent , PointerRoot , None }
time: TIMESTAMP or CurrentTime
Errors: Match , Value , Window

This request changes the input focus and the last-focus-change time. The request has no effect if the specified time is earlier
than the current last-focus-change time or is later than the current server time. Otherwise, the last-focus-change time is set to the
specified time with CurrentTime replaced by the current server time.

If None is specified as the focus, all keyboard events are discarded until a new focus window is set. In this case, the revert-to
argument is ignored.

If a window is specified as the focus, it becomes the keyboard’s focus window. If a generated keyboard event would normally be
reported to this window or one of its inferiors, the event is reported normally. Otherwise, the event is reported with respect to the
focus window.

If PointerRoot is specified as the focus, the focus window is dynamically taken to be the root window of whatever screen the
pointer is on at each keyboard event. In this case, the revert-to argument is ignored.

This request generates FocusIn and FocusOut events.

The specified focus window must be viewable at the time of the request (or a Match error results). If the focus window later
becomes not viewable, the new focus window depends on the revert-to argument. If revert-to is Parent , the focus reverts to the
parent (or the closest viewable ancestor) and the new revert-to value is taken to be None . If revert-to is PointerRoot or None ,
the focus reverts to that value. When the focus reverts, FocusIn and FocusOut events are generated, but the last-focus-change
time is not affected.

GetInputFocus

->
focus: WINDOW or PointerRoot or None
revert-to: { Parent , PointerRoot , None }

This request returns the current focus state.

QueryKeymap

->
keys: LISTofCARD8

This request returns a bit vector for the logical state of the keyboard. Each bit set to 1 indicates that the corresponding key is
currently pressed. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7 with the least
significant bit in the byte representing key 8N. Note that the logical state of a device (as seen by means of the protocol) may lag
the physical state if device event processing is frozen.

OpenFont

fid: FONT
name: STRING8
Errors: Alloc , IDChoice , Name

This request loads the specified font, if necessary, and associates identifier fid with it. The font name should use the ISO Latin-1
encoding, and uppercase and lowercase do not matter. When the characters ‘?’ and ‘*’ are used in a font name, a pattern match
is performed and any matching font is used. In the pattern, the ‘?’ character (octal value 77) will match any single character,
and the ‘*’ character (octal value 52) will match any number of characters. A structured format for font names is specified in the
X.Org standard X Logical Font Description Conventions.

Fonts are not associated with a particular screen and can be stored as a component of any graphics context.

CloseFont

X Window System Protocol
33 / 159

font: FONT
Errors: Font

This request deletes the association between the resource ID and the font. The font itself will be freed when no other resource
references it.

QueryFont

font: FONTABLE
->
font-info: FONTINFO
char-infos: LISTofCHARINFO
where: l lw(3i). T{ FONTINFO: T} T{ [draw-direction: { LeftToRight , RightToLeft } T} \ min-char-or-byte2,
max-char-or-byte2: CARD16 \ min-byte1, max-byte1: CARD8 \ all-chars-exist: BOOL \ default-char: CARD16 \
min-bounds: CHARINFO \ max-bounds: CHARINFO \ font-ascent: INT16 \ font-descent: INT16 \ properties:
LISTofFONTPROP] FONTPROP: [name: ATOM \ value: <32-bit-value>] CHARINFO: [left-side-bearing: INT16 \
right-side-bearing: INT16 \ character-width: INT16 \ ascent: INT16 \ descent: INT16 \ attributes: CARD16]
Errors: Font

This request returns logical information about a font. If a gcontext is given for font, the currently contained font is used.

The draw-direction is just a hint and indicates whether most char-infos have a positive, LeftToRight , or a negative, RightToLeft
, character-width metric. The core protocol defines no support for vertical text.

If min-byte1 and max-byte1 are both zero, then min-char-or-byte2 specifies the linear character index corresponding to the first
element of char-infos, and max-char-or-byte2 specifies the linear character index of the last element. If either min-byte1 or
max-byte1 are nonzero, then both min-char-or-byte2 and max-char-or-byte2 will be less than 256, and the 2-byte character index
values corresponding to char-infos element N (counting from 0) are: byte1 = N/D + min-byte1 byte2 = N\\\\D + min-char-or-
byte2

where: D = max-char-or-byte2 - min-char-or-byte2 + 1 / = integer division \\\\ = integer modulus

If char-infos has length zero, then min-bounds and max-bounds will be identical, and the effective char-infos is one filled with
this char-info, of length: L = D * (max-byte1 - min-byte1 + 1)

That is, all glyphs in the specified linear or matrix range have the same information, as given by min-bounds (and max-bounds).
If all-chars-exist is True , then all characters in char-infos have nonzero bounding boxes.

The default-char specifies the character that will be used when an undefined or nonexistent character is used. Note that default-
char is a CARD16, not CHAR2B. For a font using 2-byte matrix format, the default-char has byte1 in the most significant byte
and byte2 in the least significant byte. If the default-char itself specifies an undefined or nonexistent character, then no printing
is performed for an undefined or nonexistent character.

The min-bounds and max-bounds contain the minimum and maximum values of each individual CHARINFO component over
all char-infos (ignoring nonexistent characters). The bounding box of the font (that is, the smallest rectangle enclosing the shape
obtained by superimposing all characters at the same origin [x,y]) has its upper-left coordinate at: [x + min-bounds.left-side-
bearing, y - max-bounds.ascent] with a width of: max-bounds.right-side-bearing - min-bounds.left-side-bearing

and a height of: max-bounds.ascent + max-bounds.descent

The font-ascent is the logical extent of the font above the baseline and is used for determining line spacing. Specific characters
may extend beyond this. The font-descent is the logical extent of the font at or below the baseline and is used for determining
line spacing. Specific characters may extend beyond this. If the baseline is at Y-coordinate y, then the logical extent of the font
is inclusive between the Y-coordinate values (y - font-ascent) and (y + font-descent - 1).

A font is not guaranteed to have any properties. The interpretation of the property value (for example, INT32, CARD32) must
be derived from a priori knowledge of the property. A basic set of font properties is specified in the X.Org standard X Logical
Font Description Conventions.

For a character origin at [x,y], the bounding box of a character (that is, the smallest rectangle enclosing the character’s shape),
described in terms of CHARINFO components, is a rectangle with its upper-left corner at: [x + left-side-bearing, y - ascent]

with a width of: right-side-bearing - left-side-bearing

X Window System Protocol
34 / 159

and a height of: ascent + descent

and the origin for the next character is defined to be: [x + character-width, y]

Note that the baseline is logically viewed as being just below nondescending characters (when descent is zero, only pixels with
Y-coordinates less than y are drawn) and that the origin is logically viewed as being coincident with the left edge of a nonkerned
character (when left-side-bearing is zero, no pixels with X-coordinate less than x are drawn).

Note that CHARINFO metric values can be negative.

A nonexistent character is represented with all CHARINFO components zero.

The interpretation of the per-character attributes field is server-dependent.

QueryTextExtents

font: FONTABLE
string: STRING16
->
draw-direction: { LeftToRight , RightToLeft }
font-ascent: INT16
font-descent: INT16
overall-ascent: INT16
overall-descent: INT16
overall-width: INT32
overall-left: INT32
overall-right: INT32
Errors: Font

This request returns the logical extents of the specified string of characters in the specified font. If a gcontext is given for font, the
currently contained font is used. The draw-direction, font-ascent, and font-descent are the same as described in QueryFont . The
overall-ascent is the maximum of the ascent metrics of all characters in the string, and the overall-descent is the maximum of the
descent metrics. The overall-width is the sum of the character-width metrics of all characters in the string. For each character in
the string, let W be the sum of the character-width metrics of all characters preceding it in the string, let L be the left-side-bearing
metric of the character plus W, and let R be the right-side-bearing metric of the character plus W. The overall-left is the minimum
L of all characters in the string, and the overall-right is the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, the server will interpret each CHAR2B as a 16-bit
number that has been transmitted most significant byte first (that is, byte1 of the CHAR2B is taken as the most significant byte).

Characters with all zero metrics are ignored. If the font has no defined default-char, then undefined characters in the string are
also ignored.

ListFonts

pattern: STRING8
max-names: CARD16
->
names: LISTofSTRING8

This request returns a list of available font names (as controlled by the font search path; see SetFontPath request) that match
the pattern. At most, max-names names will be returned. The pattern should use the ISO Latin-1 encoding, and uppercase and
lowercase do not matter. In the pattern, the ‘?’ character (octal value 77) will match any single character, and the ‘*’ character
(octal value 52) will match any number of characters. The returned names are in lowercase.

ListFontsWithInfo

pattern: STRING8
max-names: CARD16
->
name: STRING8

X Window System Protocol
35 / 159

info FONTINFO
replies-hint: CARD32
where:
FONTINFO: <same type definition as in QueryFont>

This request is similar to ListFonts , but it also returns information about each font. The information returned for each font
is identical to what QueryFont would return except that the per-character metrics are not returned. Note that this request can
generate multiple replies. With each reply, replies-hint may provide an indication of how many more fonts will be returned. This
number is a hint only and may be larger or smaller than the number of fonts actually returned. A zero value does not guarantee
that no more fonts will be returned. After the font replies, a reply with a zero-length name is sent to indicate the end of the reply
sequence.

SetFontPath

path: LISTofSTRING8
Errors: Value

This request defines the search path for font lookup. There is only one search path per server, not one per client. The interpretation
of the strings is operating-system-dependent, but the strings are intended to specify directories to be searched in the order listed.

Setting the path to the empty list restores the default path defined for the server.

As a side effect of executing this request, the server is guaranteed to flush all cached information about fonts for which there
currently are no explicit resource IDs allocated.

The meaning of an error from this request is system specific.

GetFontPath

->
path: LISTofSTRING8

This request returns the current search path for fonts.

CreatePixmap

pid: PIXMAP
drawable: DRAWABLE
depth: CARD8
width, height: CARD16
Errors: Alloc , Drawable , IDChoice , Value

This request creates a pixmap and assigns the identifier pid to it. The width and height must be nonzero (or a Value error
results). The depth must be one of the depths supported by the root of the specified drawable (or a Value error results). The
initial contents of the pixmap are undefined.

It is legal to pass an InputOnly window as a drawable to this request.

FreePixmap

pixmap: PIXMAP
Errors: Pixmap

This request deletes the association between the resource ID and the pixmap. The pixmap storage will be freed when no other
resource references it.

CreateGC

cid: GCONTEXT

X Window System Protocol
36 / 159

drawable: DRAWABLE
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Alloc , Drawable , Font , IDChoice , Match , Pixmap , Value

This request creates a graphics context and assigns the identifier cid to it. The gcontext can be used with any destination drawable
having the same root and depth as the specified drawable; use with other drawables results in a Match error.

The value-mask and value-list specify which components are to be explicitly initialized. The context components are:

Component Type

function
{ Clear, And, AndReverse, Copy, AndInverted, NoOp,
Xor, Or, Nor, Equiv, Invert, OrReverse, CopyInverted,
OrInverted, Nand, Set }

plane-mask CARD32
foreground CARD32
background CARD32
line-width CARD16
line-style { Solid, OnOffDash, DoubleDash }
cap-style { NotLast, Butt, Round, Projecting }
join-style { Miter, Round, Bevel }
fill-style { Solid, Tiled, OpaqueStippled, Stippled }
fill-rule { EvenOdd, Winding }
arc-mode { Chord, PieSlice }
tile PIXMAP
stipple PIXMAP
tile-stipple-x-origin INT16
tile-stipple-y-origin INT16
font FONT
subwindow-mode { ClipByChildren, IncludeInferiors }
graphics-exposures BOOL
clip-x-origin INT16
clip-y-origin INT16
clip-mask PIXMAP or None
dash-offset CARD16
dashes CARD8

In graphics operations, given a source and destination pixel, the result is computed bitwise on corresponding bits of the pixels;
that is, a Boolean operation is performed in each bit plane. The plane-mask restricts the operation to a subset of planes, so the
result is:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or plane-mask. They are simply truncated to the
appropriate number of bits.

The meanings of the functions are:

Function Operation
Clear 0
And src AND dst
AndReverse src AND (NOT dst)
Copy src
AndInverted (NOT src) AND dst
NoOp dst
Xor src XOR dst

X Window System Protocol
37 / 159

Function Operation
Or src OR dst
Nor (NOT src) AND (NOT dst)
Equiv (NOT src) XOR dst
Invert NOT dst
OrReverse src OR (NOT dst)
CopyInverted NOT src
OrInverted (NOT src) OR dst
Nand (NOT src) OR (NOT dst)
Set 1

The line-width is measured in pixels and can be greater than or equal to one, a wide line, or the special value zero, a thin line.

Wide lines are drawn centered on the path described by the graphics request. Unless otherwise specified by the join or cap style,
the bounding box of a wide line with endpoints [x1, y1], [x2, y2] and width w is a rectangle with vertices at the following real
coordinates:

[x1-(w*sn/2), y1+(w*cs/2)], [x1+(w*sn/2), y1-(w*cs/2)],
[x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

The sn is the sine of the angle of the line and cs is the cosine of the angle of the line. A pixel is part of the line (and hence drawn)
if the center of the pixel is fully inside the bounding box, which is viewed as having infinitely thin edges. If the center of the pixel
is exactly on the bounding box, it is part of the line if and only if the interior is immediately to its right (x increasing direction).
Pixels with centers on a horizontal edge are a special case and are part of the line if and only if the interior or the boundary is
immediately below (y increasing direction) and if the interior or the boundary is immediately to the right (x increasing direction).
Note that this description is a mathematical model describing the pixels that are drawn for a wide line and does not imply that
trigonometry is required to implement such a model. Real or fixed point arithmetic is recommended for computing the corners
of the line endpoints for lines greater than one pixel in width.

Thin lines (zero line-width) are nominally one pixel wide lines drawn using an unspecified, device-dependent algorithm. There
are only two constraints on this algorithm. First, if a line is drawn unclipped from [x1,y1] to [x2,y2] and another line is drawn
unclipped from [x1+dx,y1+dy] to [x2+dx,y2+dy], then a point [x,y] is touched by drawing the first line if and only if the point
[x+dx,y+dy] is touched by drawing the second line. Second, the effective set of points comprising a line cannot be affected by
clipping. Thus, a point is touched in a clipped line if and only if the point lies inside the clipping region and the point would be
touched by the line when drawn unclipped.

Note that a wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line drawn from [x2,y2] to [x1,y1],
not counting cap-style and join-style. Implementors are encouraged to make this property true for thin lines, but it is not required.
A line-width of zero may differ from a line-width of one in which pixels are drawn. In general, drawing a thin line will be faster
than drawing a wide line of width one, but thin lines may not mix well aesthetically with wide lines because of the different
drawing algorithms. If it is desirable to obtain precise and uniform results across all displays, a client should always use a
line-width of one, rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

Solid The full path of the line is drawn.

DoubleDash
The full path of the line is drawn, but the even dashes are
filled differently than the odd dashes (see fill-style), with
Butt cap-style used where even and odd dashes meet.

OnOffDash
Only the even dashes are drawn, and cap-style applies to all
internal ends of the individual dashes (except NotLast is
treated as Butt).

The cap-style defines how the endpoints of a path are drawn:

NotLast The result is equivalent to Butt, except that for a line-width
of zero the final endpoint is not drawn.

X Window System Protocol
38 / 159

Butt The result is square at the endpoint (perpendicular to the
slope of the line) with no projection beyond.

Round
The result is a circular arc with its diameter equal to the
line-width, centered on the endpoint; it is equivalent to
Butt for line-width zero.

Projecting
The result is square at the end, but the path continues
beyond the endpoint for a distance equal to half the
line-width; it is equivalent to Butt for line-width zero.

The join-style defines how corners are drawn for wide lines:

Miter
The outer edges of the two lines extend to meet at an angle.
However, if the angle is less than 11 degrees, a Bevel
join-style is used instead.

Round The result is a circular arc with a diameter equal to the
line-width, centered on the joinpoint.

Bevel The result is Butt endpoint styles, and then the triangular
notch is filled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is applied to both endpoints, the semantics depends on
the line-width and the cap-style:

NotLast thin This is device-dependent, but the
desired effect is that nothing is drawn.

Butt thin
This is device-dependent, but the
desired effect is that a single pixel is
drawn.

Round thin This is the same as Butt/thin.
Projecting thin This is the same as Butt/thin.
Butt wide Nothing is drawn.

Round wide
The closed path is a circle, centered at
the endpoint and with a diameter equal
to the line-width.

Projecting wide

The closed path is a square, aligned
with the coordinate axes, centered at
the endpoint and with sides equal to
the line-width.

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied at one or both endpoints, the effect is as if the
line was removed from the overall path. However, if the total path consists of (or is reduced to) a single point joined with itself,
the effect is the same as when the cap-style is applied at both endpoints.

The tile/stipple represents an infinite two-dimensional plane with the tile/stipple replicated in all dimensions. When that plane is
superimposed on the drawable for use in a graphics operation, the upper-left corner of some instance of the tile/stipple is at the
coordinates within the drawable specified by the tile/stipple origin. The tile/stipple and clip origins are interpreted relative to the
origin of whatever destination drawable is specified in a graphics request.

The tile pixmap must have the same root and depth as the gcontext (or a Match error results). The stipple pixmap must have
depth one and must have the same root as the gcontext (or a Match error results). For fill-style Stippled (but not fill-style
OpaqueStippled), the stipple pattern is tiled in a single plane and acts as an additional clip mask to be ANDed with the
clip-mask. Any size pixmap can be used for tiling or stippling, although some sizes may be faster to use than others.

The fill-style defines the contents of the source for line, text, and fill requests. For all text and fill requests (for example,
PolyText8, PolyText16, PolyFillRectangle, FillPoly, and PolyFillArc) as well as for line requests with line-style Solid, (for ex-
ample, PolyLine, PolySegment, PolyRectangle, PolyArc) and for the even dashes for line requests with line-style OnOffDash
or DoubleDash:

Solid Foreground

X Window System Protocol
39 / 159

Tiled Tile

OpaqueStippled
A tile with the same width and height as stipple but with
background everywhere stipple has a zero and with
foreground everywhere stipple has a one

Stippled Foreground masked by stipple

For the odd dashes for line requests with line-style DoubleDash:

Solid Background
Tiled Same as for even dashes
OpaqueStippled Same as for even dashes
Stippled Background masked by stipple

The dashes value allowed here is actually a simplified form of the more general patterns that can be set with SetDashes .
Specifying a value of N here is equivalent to specifying the two element list [N, N] in SetDashes . The value must be nonzero
(or a Value error results). The meaning of dash-offset and dashes are explained in the SetDashes request.

The clip-mask restricts writes to the destination drawable. Only pixels where the clip-mask has bits set to 1 are drawn. Pixels are
not drawn outside the area covered by the clip-mask or where the clip-mask has bits set to 0. The clip-mask affects all graphics
requests, but it does not clip sources. The clip-mask origin is interpreted relative to the origin of whatever destination drawable
is specified in a graphics request. If a pixmap is specified as the clip-mask, it must have depth 1 and have the same root as the
gcontext (or a Match error results). If clip-mask is None , then pixels are always drawn, regardless of the clip origin. The
clip-mask can also be set with the SetClipRectangles request.

For ClipByChildren , both source and destination windows are additionally clipped by all viewable InputOutput children.
For IncludeInferiors , neither source nor destination window is clipped by inferiors. This will result in including subwindow
contents in the source and drawing through subwindow boundaries of the destination. The use of IncludeInferiors with a source
or destination window of one depth with mapped inferiors of differing depth is not illegal, but the semantics is undefined by the
core protocol.

The fill-rule defines what pixels are inside (that is, are drawn) for paths given in FillPoly requests. EvenOdd means a point
is inside if an infinite ray with the point as origin crosses the path an odd number of times. For Winding , a point is inside if
an infinite ray with the point as origin crosses an unequal number of clockwise and counterclockwise directed path segments. A
clockwise directed path segment is one that crosses the ray from left to right as observed from the point. A counter-clockwise
segment is one that crosses the ray from right to left as observed from the point. The case where a directed line segment is
coincident with the ray is uninteresting because one can simply choose a different ray that is not coincident with a segment.

For both fill rules, a point is infinitely small and the path is an infinitely thin line. A pixel is inside if the center point of the pixel
is inside and the center point is not on the boundary. If the center point is on the boundary, the pixel is inside if and only if the
polygon interior is immediately to its right (x increasing direction). Pixels with centers along a horizontal edge are a special case
and are inside if and only if the polygon interior is immediately below (y increasing direction).

The arc-mode controls filling in the PolyFillArc request.

The graphics-exposures flag controls GraphicsExposure event generation for CopyArea and CopyPlane requests (and any
similar requests defined by extensions).

The default component values are:

Component Default
function Copy
plane-mask all ones
foreground 0
background 1
line-width 0
line-style Solid
cap-style Butt
join-style Miter
fill-style Solid

X Window System Protocol
40 / 159

Component Default
fill-rule EvenOdd
arc-mode PieSlice

tile

Pixmap of unspecified size filled with foreground pixel
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this
pixmap)

stipple Pixmap of unspecified size filled with ones
tile-stipple-x-origin 0
tile-stipple-y-origin 0
font <server-dependent-font>
subwindow-mode ClipByChildren
graphics-exposures True
clip-x-origin 0
clip-y-origin 0
clip-mask None
dash-offset 0
dashes 4 (that is, the list [4, 4])

Storing a pixmap in a gcontext might or might not result in a copy being made. If the pixmap is later used as the destination for
a graphics request, the change might or might not be reflected in the gcontext. If the pixmap is used simultaneously in a graphics
request as both a destination and as a tile or stipple, the results are not defined.

It is quite likely that some amount of gcontext information will be cached in display hardware and that such hardware can only
cache a small number of gcontexts. Given the number and complexity of components, clients should view switching between
gcontexts with nearly identical state as significantly more expensive than making minor changes to a single gcontext.

ChangeGC

gc: GCONTEXT
value-mask: BITMASK
value-list: LISTofVALUE
Errors: Alloc , Font , GContext , Match , Pixmap , Value

This request changes components in gc. The value-mask and value-list specify which components are to be changed. The values
and restrictions are the same as for CreateGC .

Changing the clip-mask also overrides any previous SetClipRectangles request on the context. Changing dash-offset or dashes
overrides any previous SetDashes request on the context.

The order in which components are verified and altered is server-dependent. If an error is generated, a subset of the components
may have been altered.

CopyGC

src-gc, dst-gc: GCONTEXT
value-mask: BITMASK
Errors: Alloc , GContext , Match , Value

This request copies components from src-gc to dst-gc. The value-mask specifies which components to copy, as for CreateGC .
The two gcontexts must have the same root and the same depth (or a Match error results).

SetDashes

gc: GCONTEXT
dash-offset: CARD16
dashes: LISTofCARD8
Errors: Alloc , GContext , Value

X Window System Protocol
41 / 159

This request sets dash-offset and dashes in gc for dashed line styles. Dashes cannot be empty (or a Value error results).
Specifying an odd-length list is equivalent to specifying the same list concatenated with itself to produce an even-length list.
The initial and alternating elements of dashes are the even dashes; the others are the odd dashes. Each element specifies a dash
length in pixels. All of the elements must be nonzero (or a Value error results). The dash-offset defines the phase of the pattern,
specifying how many pixels into dashes the pattern should actually begin in any single graphics request. Dashing is continuous
through path elements combined with a join-style but is reset to the dash-offset between each sequence of joined lines.

The unit of measure for dashes is the same as in the ordinary coordinate system. Ideally, a dash length is measured along the
slope of the line, but implementations are only required to match this ideal for horizontal and vertical lines. Failing the ideal
semantics, it is suggested that the length be measured along the major axis of the line. The major axis is defined as the x axis for
lines drawn at an angle of between -45 and +45 degrees or between 135 and 225 degrees from the x axis. For all other lines, the
major axis is the y axis.

For any graphics primitive, the computation of the endpoint of an individual dash only depends on the geometry of the primitive,
the start position of the dash, the direction of the dash, and the dash length.

For any graphics primitive, the total set of pixels used to render the primitive (both even and odd numbered dash elements) with
DoubleDash line-style is the same as the set of pixels used to render the primitive with Solid line-style.

For any graphics primitive, if the primitive is drawn with OnOffDash or DoubleDash line-style unclipped at position [x,y] and
again at position [x+dx,y+dy], then a point [x1,y1] is included in a dash in the first instance if and only if the point [x1+dx,y1+dy]
is included in the dash in the second instance. In addition, the effective set of points comprising a dash cannot be affected by
clipping. A point is included in a clipped dash if and only if the point lies inside the clipping region and the point would be
included in the dash when drawn unclipped.

SetClipRectangles

gc: GCONTEXT
clip-x-origin, clip-y-origin: INT16
rectangles: LISTofRECTANGLE
ordering: { UnSorted , YSorted , YXSorted , YXBanded }
Errors: Alloc , GContext , Match , Value

This request changes clip-mask in gc to the specified list of rectangles and sets the clip origin. Output will be clipped to remain
contained within the rectangles. The clip origin is interpreted relative to the origin of whatever destination drawable is specified in
a graphics request. The rectangle coordinates are interpreted relative to the clip origin. The rectangles should be nonintersecting,
or graphics results will be undefined. Note that the list of rectangles can be empty, which effectively disables output. This is the
opposite of passing None as the clip-mask in CreateGC and ChangeGC .

If known by the client, ordering relations on the rectangles can be specified with the ordering argument. This may provide faster
operation by the server. If an incorrect ordering is specified, the server may generate a Match error, but it is not required to
do so. If no error is generated, the graphics results are undefined. UnSorted means that the rectangles are in arbitrary order.
YSorted means that the rectangles are nondecreasing in their Y origin. YXSorted additionally constrains YSorted order in
that all rectangles with an equal Y origin are nondecreasing in their X origin. YXBanded additionally constrains YXSorted by
requiring that, for every possible Y scanline, all rectangles that include that scanline have identical Y origins and Y extents.

FreeGC

gc: GCONTEXT
Errors: GContext

This request deletes the association between the resource ID and the gcontext and destroys the gcontext.

ClearArea

window: WINDOW
x, y: INT16
width, height: CARD16
exposures: BOOL
Errors: Match , Value , Window

X Window System Protocol
42 / 159

The x and y coordinates are relative to the window’s origin and specify the upper-left corner of the rectangle. If width is zero, it
is replaced with the current width of the window minus x. If height is zero, it is replaced with the current height of the window
minus y. If the window has a defined background tile, the rectangle is tiled with a plane-mask of all ones and function of Copy
and a subwindow-mode of ClipByChildren . If the window has background None , the contents of the window are not changed.
In either case, if exposures is True , then one or more exposure events are generated for regions of the rectangle that are either
visible or are being retained in a backing store.

It is a Match error to use an InputOnly window in this request.

CopyArea

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT
src-x, src-y: INT16
width, height: CARD16
dst-x, dst-y: INT16
Errors: Drawable , GContext , Match

This request combines the specified rectangle of src-drawable with the specified rectangle of dst-drawable. The src-x and src-y
coordinates are relative to src-drawable’s origin. The dst-x and dst-y are relative to dst-drawable’s origin, each pair specifying
the upper-left corner of the rectangle. The src-drawable must have the same root and the same depth as dst-drawable (or a Match
error results).

If regions of the source rectangle are obscured and have not been retained in backing store or if regions outside the boundaries
of the source drawable are specified, then those regions are not copied, but the following occurs on all corresponding destination
regions that are either visible or are retained in backing-store. If the dst-drawable is a window with a background other than
None , these corresponding destination regions are tiled (with plane-mask of all ones and function Copy) with that back-
ground. Regardless of tiling and whether the destination is a window or a pixmap, if graphics-exposures in gc is True , then
GraphicsExposure events for all corresponding destination regions are generated.

If graphics-exposures is True but no GraphicsExposure events are generated, then a NoExposure event is generated.

GC components: function, plane-mask, subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, clip-mask

CopyPlane

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT
src-x, src-y: INT16
width, height: CARD16
dst-x, dst-y: INT16
bit-plane: CARD32
Errors: Drawable , GContext , Match , Value

The src-drawable must have the same root as dst-drawable (or a Match error results), but it need not have the same depth. The
bit-plane must have exactly one bit set to 1 and the value of bit-plane must be less than %2 sup n% where n is the depth of src-
drawable (or a Value error results). Effectively, a pixmap of the same depth as dst-drawable and with size specified by the source
region is formed using the foreground/background pixels in gc (foreground everywhere the bit-plane in src-drawable contains a
bit set to 1, background everywhere the bit-plane contains a bit set to 0), and the equivalent of a CopyArea is performed, with
all the same exposure semantics. This can also be thought of as using the specified region of the source bit-plane as a stipple with
a fill-style of OpaqueStippled for filling a rectangular area of the destination.

GC components: function, plane-mask, foreground, background, subwindow-mode, graphics-exposures, clip-x-origin, clip-y-
origin, clip-mask

PolyPoint

drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: { Origin , Previous }

X Window System Protocol
43 / 159

points: LISTofPOINT
Errors: Drawable , GContext , Match , Value

This request combines the foreground pixel in gc with the pixel at each point in the drawable. The points are drawn in the order
listed.

The first point is always relative to the drawable’s origin. The rest are relative either to that origin or the previous point, depending
on the coordinate-mode.

GC components: function, plane-mask, foreground, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

PolyLine

drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: { Origin , Previous }
points: LISTofPOINT
Errors: Drawable , GContext , Match , Value

This request draws lines between each pair of points (point[i], point[i+1]). The lines are drawn in the order listed. The lines join
correctly at all intermediate points, and if the first and last points coincide, the first and last lines also join correctly.

For any given line, no pixel is drawn more than once. If thin (zero line-width) lines intersect, the intersecting pixels are drawn
multiple times. If wide lines intersect, the intersecting pixels are drawn only once, as though the entire PolyLine were a single
filled shape.

The first point is always relative to the drawable’s origin. The rest are relative either to that origin or the previous point, depending
on the coordinate-mode.

When either of the two lines involved in a Bevel join is neither vertical nor horizontal, then the slope and position of the line
segment defining the bevel join edge is implementation dependent. However, the computation of the slope and distance (relative
to the join point) only depends on the line width and the slopes of the two lines.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset,
dashes

PolySegment

drawable: DRAWABLE
gc: GCONTEXT
segments: LISTofSEGMENT
where:
SEGMENT: [x1, y1, x2, y2: INT16]
Errors: Drawable , GContext , Match

For each segment, this request draws a line between [x1, y1] and [x2, y2]. The lines are drawn in the order listed. No joining is
performed at coincident endpoints. For any given line, no pixel is drawn more than once. If lines intersect, the intersecting pixels
are drawn multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin,
clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset,
dashes

PolyRectangle

drawable: DRAWABLE

X Window System Protocol
44 / 159

gc: GCONTEXT
rectangles: LISTofRECTANGLE
Errors: Drawable , GContext , Match

This request draws the outlines of the specified rectangles, as if a five-point PolyLine were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

The x and y coordinates of each rectangle are relative to the drawable’s origin and define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is drawn more than once. If rectangles intersect,
the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset,
dashes

PolyArc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC
Errors: Drawable , GContext , Match

This request draws circular or elliptical arcs. Each arc is specified by a rectangle and two angles. The angles are signed integers
in degrees scaled by 64, with positive indicating counterclockwise motion and negative indicating clockwise motion. The start
of the arc is specified by angle1 relative to the three-o’clock position from the center of the rectangle, and the path and extent
of the arc is specified by angle2 relative to the start of the arc. If the magnitude of angle2 is greater than 360 degrees, it is
truncated to 360 degrees. The x and y coordinates of the rectangle are relative to the origin of the drawable. For an arc specified
as [x,y,w,h,a1,a2], the origin of the major and minor axes is at [x+(w/2),y+(h/2)], and the infinitely thin path describing the entire
circle/ellipse intersects the horizontal axis at [x,y+(h/2)] and [x+w,y+(h/2)] and intersects the vertical axis at [x+(w/2),y] and
[x+(w/2),y+h]. These coordinates are not necessarily integral; that is, they are not truncated to discrete coordinates.

For a wide line with line-width lw, the ideal bounding outlines for filling are given by the two infinitely thin paths consisting
of all points whose perpendicular distance from a tangent to the path of the circle/ellipse is equal to lw/2 (which may be a
fractional value). When the width and height of the arc are not equal and both are nonzero, then the actual bounding outlines are
implementation dependent. However, the computation of the shape and position of the bounding outlines (relative to the center
of the arc) only depends on the width and height of the arc and the line-width.

The cap-style is applied the same as for a line corresponding to the tangent of the circle/ellipse at the endpoint. When the angle
of an arc face is not an integral multiple of 90 degrees, and the width and height of the arc are both are nonzero, then the shape
and position of the cap at that face is implementation dependent. However, for a Butt cap, the face is defined by a straight line,
and the computation of the position (relative to the center of the arc) and the slope of the line only depends on the width and
height of the arc and the angle of the arc face. For other cap styles, the computation of the position (relative to the center of the
arc) and the shape of the cap only depends on the width and height of the arc, the line-width, the angle of the arc face, and the
direction (clockwise or counter clockwise) of the arc from the endpoint.

The join-style is applied the same as for two lines corresponding to the tangents of the circles/ellipses at the join point. When
the width and height of both arcs are nonzero, and the angle of either arc face is not an integral multiple of 90 degrees, then the
shape of the join is implementation dependent. However, the computation of the shape only depends on the width and height of
each arc, the line-width, the angles of the two arc faces, the direction (clockwise or counter clockwise) of the arcs from the join
point, and the relative orientation of the two arc center points.

For an arc specified as [x,y,w,h,a1,a2], the angles must be specified in the effectively skewed coordinate system of the ellipse
(for a circle, the angles and coordinate systems are identical). The relationship between these angles and angles expressed in the
normal coordinate system of the screen (as measured with a protractor) is as follows: skewed-angle = atan(tan(normal-angle) *
w/h) + adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees scaled by 64) in the range [0,2*PI). The atan
returns a value in the range [-PI/2,PI/2]. The adjust is:

X Window System Protocol
45 / 159

l l. 0 for normal-angle in the range [0,PI/2) PI for normal-angle in the range [PI/2,(3*PI)/2) 2*PI for normal-angle in the range
[(3*PI)/2,2*PI)

The arcs are drawn in the order listed. If the last point in one arc coincides with the first point in the following arc, the two arcs
will join correctly. If the first point in the first arc coincides with the last point in the last arc, the two arcs will join correctly.
For any given arc, no pixel is drawn more than once. If two arcs join correctly and the line-width is greater than zero and
the arcs intersect, no pixel is drawn more than once. Otherwise, the intersecting pixels of intersecting arcs are drawn multiple
times. Specifying an arc with one endpoint and a clockwise extent draws the same pixels as specifying the other endpoint and an
equivalent counterclockwise extent, except as it affects joins.

By specifying one axis to be zero, a horizontal or vertical line can be drawn.

Angles are computed based solely on the coordinate system, ignoring the aspect ratio.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset,
dashes

FillPoly

drawable: DRAWABLE
gc: GCONTEXT
shape: { Complex , Nonconvex , Convex }
coordinate-mode: { Origin , Previous }
points: LISTofPOINT
Errors: Drawable , GContext , Match , Value

This request fills the region closed by the specified path. The path is closed automatically if the last point in the list does not
coincide with the first point. No pixel of the region is drawn more than once.

The first point is always relative to the drawable’s origin. The rest are relative either to that origin or the previous point, depending
on the coordinate-mode.

The shape parameter may be used by the server to improve performance. Complex means the path may self-intersect. Contigu-
ous coincident points in the path are not treated as self-intersection.

Nonconvex means the path does not self-intersect, but the shape is not wholly convex. If known by the client, specifying
Nonconvex over Complex may improve performance. If Nonconvex is specified for a self-intersecting path, the graphics
results are undefined.

Convex means that for every pair of points inside the polygon, the line segment connecting them does not intersect the path.
If known by the client, specifying Convex can improve performance. If Convex is specified for a path that is not convex, the
graphics results are undefined.

GC components: function, plane-mask, fill-style, fill-rule, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin

PolyFillRectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE
Errors: Drawable , GContext , Match

This request fills the specified rectangles, as if a four-point FillPoly were specified for each rectangle: [x,y] [x+width,y]
[x+width,y+height] [x,y+height]

The x and y coordinates of each rectangle are relative to the drawable’s origin and define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is drawn more than once. If rectangles intersect,
the intersecting pixels are drawn multiple times.

X Window System Protocol
46 / 159

GC components: function, plane-mask, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin

PolyFillArc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC
Errors: Drawable , GContext , Match

For each arc, this request fills the region closed by the infinitely thin path described by the specified arc and one or two line
segments, depending on the arc-mode. For Chord , the single line segment joining the endpoints of the arc is used. For PieSlice
, the two line segments joining the endpoints of the arc with the center point are used.

For an arc specified as [x,y,w,h,a1,a2], the origin of the major and minor axes is at [x+(w/2),y+(h/2)], and the infinitely thin
path describing the entire circle/ellipse intersects the horizontal axis at [x,y+(h/2)] and [x+w,y+(h/2)] and intersects the vertical
axis at [x+(w/2),y] and [x+(w/2),y+h]. These coordinates are not necessarily integral; that is, they are not truncated to discrete
coordinates.

The arc angles are interpreted as specified in the PolyArc request. When the angle of an arc face is not an integral multiple of
90 degrees, then the precise endpoint on the arc is implementation dependent. However, for Chord arc-mode, the computation
of the pair of endpoints (relative to the center of the arc) only depends on the width and height of the arc and the angles of the
two arc faces. For PieSlice arc-mode, the computation of an endpoint only depends on the angle of the arc face for that endpoint
and the ratio of the arc width to arc height.

The arcs are filled in the order listed. For any given arc, no pixel is drawn more than once. If regions intersect, the intersecting
pixels are drawn multiple times.

GC components: function, plane-mask, fill-style, arc-mode, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin

PutImage

drawable: DRAWABLE
gc: GCONTEXT
depth: CARD8
width, height: CARD16
dst-x, dst-y: INT16
left-pad: CARD8
format: { Bitmap , XYPixmap , ZPixmap }
data: LISTofBYTE
Errors: Drawable , GContext , Match , Value

This request combines an image with a rectangle of the drawable. The dst-x and dst-y coordinates are relative to the drawable’s
origin.

If Bitmap format is used, then depth must be one (or a Match error results), and the image must be in XY format. The
foreground pixel in gc defines the source for bits set to 1 in the image, and the background pixel defines the source for the bits
set to 0.

For XYPixmap and ZPixmap , the depth must match the depth of the drawable (or a Match error results). For XYPixmap ,
the image must be sent in XY format. For ZPixmap , the image must be sent in the Z format defined for the given depth.

The left-pad must be zero for ZPixmap format (or a Match error results). For Bitmap and XYPixmap format, left-pad must
be less than bitmap-scanline-pad as given in the server connection setup information (or a Match error results). The first left-pad
bits in every scanline are to be ignored by the server. The actual image begins that many bits into the data. The width argument
defines the width of the actual image and does not include left-pad.

GC components: function, plane-mask, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

X Window System Protocol
47 / 159

GC mode-dependent components: foreground, background

GetImage

drawable: DRAWABLE
x, y: INT16
width, height: CARD16
plane-mask: CARD32
format: { XYPixmap , ZPixmap }
->
depth: CARD8
visual: VISUALID or None
data: LISTofBYTE
Errors: Drawable , Match , Value

This request returns the contents of the given rectangle of the drawable in the given format. The x and y coordinates are relative
to the drawable’s origin and define the upper-left corner of the rectangle. If XYPixmap is specified, only the bit planes specified
in plane-mask are transmitted, with the planes appearing from most significant to least significant in bit order. If ZPixmap is
specified, then bits in all planes not specified in plane-mask are transmitted as zero. Range checking is not performed on plane-
mask; extraneous bits are simply ignored. The returned depth is as specified when the drawable was created and is the same as a
depth component in a FORMAT structure (in the connection setup), not a bits-per-pixel component. If the drawable is a window,
its visual type is returned. If the drawable is a pixmap, the visual is None .

If the drawable is a pixmap, then the given rectangle must be wholly contained within the pixmap (or a Match error results). If
the drawable is a window, the window must be viewable, and it must be the case that, if there were no inferiors or overlapping
windows, the specified rectangle of the window would be fully visible on the screen and wholly contained within the outside
edges of the window (or a Match error results). Note that the borders of the window can be included and read with this request.
If the window has a backing store, then the backing-store contents are returned for regions of the window that are obscured by
noninferior windows; otherwise, the returned contents of such obscured regions are undefined. Also undefined are the returned
contents of visible regions of inferiors of different depth than the specified window. The pointer cursor image is not included in
the contents returned.

This request is not general-purpose in the same sense as other graphics-related requests. It is intended specifically for rudimentary
hardcopy support.

PolyText8

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
items: LISTofTEXTITEM8
where: r l. TEXTITEM8: TEXTELT8 or FONT
TEXTELT8: [delta: INT8
\ string: STRING8]
Errors: Drawable , Font , GContext , Match

The x and y coordinates are relative to the drawable’s origin and specify the baseline starting position (the initial character origin).
Each text item is processed in turn. A font item causes the font to be stored in gc and to be used for subsequent text. Switching
among fonts does not affect the next character origin. A text element delta specifies an additional change in the position along
the x axis before the string is drawn; the delta is always added to the character origin. Each character image, as defined by the
font in gc, is treated as an additional mask for a fill operation on the drawable.

All contained FONTs are always transmitted most significant byte first.

If a Font error is generated for an item, the previous items may have been drawn.

For fonts defined with 2-byte matrix indexing, each STRING8 byte is interpreted as a byte2 value of a CHAR2B with a byte1
value of zero.

GC components: function, plane-mask, fill-style, font, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

X Window System Protocol
48 / 159

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin

PolyText16

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
items: LISTofTEXTITEM16
where: r l. TEXTITEM16: TEXTELT16 or FONT
TEXTELT16: [delta: INT8
\ string: STRING16]
Errors: Drawable , Font , GContext , Match

This request is similar to PolyText8 , except 2-byte (or 16-bit) characters are used. For fonts defined with linear indexing rather
than 2-byte matrix indexing, the server will interpret each CHAR2B as a 16-bit number that has been transmitted most significant
byte first (that is, byte1 of the CHAR2B is taken as the most significant byte).

ImageText8

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
string: STRING8
Errors: Drawable , GContext , Match

The x and y coordinates are relative to the drawable’s origin and specify the baseline starting position (the initial character
origin). The effect is first to fill a destination rectangle with the background pixel defined in gc and then to paint the text with the
foreground pixel. The upper-left corner of the filled rectangle is at: [x, y - font-ascent]

the width is: overall-width

and the height is: font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as they would be returned by a QueryTextExtents call using gc and string.

The function and fill-style defined in gc are ignored for this request. The effective function is Copy , and the effective fill-style
Solid .

For fonts defined with 2-byte matrix indexing, each STRING8 byte is interpreted as a byte2 value of a CHAR2B with a byte1
value of zero.

GC components: plane-mask, foreground, background, font, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

ImageText16

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
string: STRING16
Errors: Drawable , GContext , Match

This request is similar to ImageText8 , except 2-byte (or 16-bit) characters are used. For fonts defined with linear indexing
rather than 2-byte matrix indexing, the server will interpret each CHAR2B as a 16-bit number that has been transmitted most
significant byte first (that is, byte1 of the CHAR2B is taken as the most significant byte).

CreateColormap

mid: COLORMAP
visual: VISUALID
window: WINDOW
alloc: { None , All }

X Window System Protocol
49 / 159

Errors: Alloc , IDChoice , Match , Value , Window

This request creates a colormap of the specified visual type for the screen on which the window resides and associates the
identifier mid with it. The visual type must be one supported by the screen (or a Match error results). The initial values of
the colormap entries are undefined for classes GrayScale , PseudoColor , and DirectColor . For StaticGray , StaticColor ,
and TrueColor , the entries will have defined values, but those values are specific to the visual and are not defined by the core
protocol. For StaticGray , StaticColor , and TrueColor , alloc must be specified as None (or a Match error results). For the
other classes, if alloc is None , the colormap initially has no allocated entries, and clients can allocate entries.

If alloc is All , then the entire colormap is allocated writable. The initial values of all allocated entries are undefined. For
GrayScale and PseudoColor , the effect is as if an AllocColorCells request returned all pixel values from zero to N - 1,
where N is the colormap-entries value in the specified visual. For DirectColor , the effect is as if an AllocColorPlanes request
returned a pixel value of zero and red-mask, green-mask, and blue-mask values containing the same bits as the corresponding
masks in the specified visual. However, in all cases, none of these entries can be freed with FreeColors .

FreeColormap

cmap: COLORMAP
Errors: Colormap

This request deletes the association between the resource ID and the colormap and frees the colormap storage. If the colormap
is an installed map for a screen, it is uninstalled (see UninstallColormap request). If the colormap is defined as the colormap
for a window (by means of CreateWindow or ChangeWindowAttributes), the colormap for the window is changed to None
, and a ColormapNotify event is generated. The protocol does not define the colors displayed for a window with a colormap of
None .

This request has no effect on a default colormap for a screen.

CopyColormapAndFree

mid, src-cmap: COLORMAP
Errors: Alloc , Colormap , IDChoice

This request creates a colormap of the same visual type and for the same screen as src-cmap, and it associates identifier mid
with it. It also moves all of the client’s existing allocations from src-cmap to the new colormap with their color values intact
and their read-only or writable characteristics intact, and it frees those entries in src-cmap. Color values in other entries in the
new colormap are undefined. If src-cmap was created by the client with alloc All (see CreateColormap request), then the new
colormap is also created with alloc All , all color values for all entries are copied from src-cmap, and then all entries in src-cmap
are freed. If src-cmap was not created by the client with alloc All , then the allocations to be moved are all those pixels and planes
that have been allocated by the client using either AllocColor , AllocNamedColor , AllocColorCells , or AllocColorPlanes
and that have not been freed since they were allocated.

InstallColormap

cmap: COLORMAP
Errors: Colormap

This request makes this colormap an installed map for its screen. All windows associated with this colormap immediately display
with true colors. As a side effect, additional colormaps might be implicitly installed or uninstalled by the server. Which other
colormaps get installed or uninstalled is server-dependent except that the required list must remain installed.

If cmap is not already an installed map, a ColormapNotify event is generated on every window having cmap as an attribute. In
addition, for every other colormap that is installed or uninstalled as a result of the request, a ColormapNotify event is generated
on every window having that colormap as an attribute.

At any time, there is a subset of the installed maps that are viewed as an ordered list and are called the required list. The length of
the required list is at most M, where M is the min-installed-maps specified for the screen in the connection setup. The required
list is maintained as follows. When a colormap is an explicit argument to InstallColormap , it is added to the head of the list;

X Window System Protocol
50 / 159

the list is truncated at the tail, if necessary, to keep the length of the list to at most M. When a colormap is an explicit argument to
UninstallColormap and it is in the required list, it is removed from the list. A colormap is not added to the required list when it
is installed implicitly by the server, and the server cannot implicitly uninstall a colormap that is in the required list.

Initially the default colormap for a screen is installed (but is not in the required list).

UninstallColormap

cmap: COLORMAP
Errors: Colormap

If cmap is on the required list for its screen (see InstallColormap request), it is removed from the list. As a side effect, cmap
might be uninstalled, and additional colormaps might be implicitly installed or uninstalled. Which colormaps get installed or
uninstalled is server-dependent except that the required list must remain installed.

If cmap becomes uninstalled, a ColormapNotify event is generated on every window having cmap as an attribute. In addition,
for every other colormap that is installed or uninstalled as a result of the request, a ColormapNotify event is generated on every
window having that colormap as an attribute.

ListInstalledColormaps

window: WINDOW
->
cmaps: LISTofCOLORMAP
Errors: Window

This request returns a list of the currently installed colormaps for the screen of the specified window. The order of colormaps is
not significant, and there is no explicit indication of the required list (see InstallColormap request).

AllocColor

cmap: COLORMAP
red, green, blue: CARD16
->
pixel: CARD32
red, green, blue: CARD16
Errors: Alloc , Colormap

This request allocates a read-only colormap entry corresponding to the closest RGB values provided by the hardware. It also
returns the pixel and the RGB values actually used. Multiple clients requesting the same effective RGB values can be assigned
the same read-only entry, allowing entries to be shared.

AllocNamedColor

cmap: COLORMAP
name: STRING8
->
pixel: CARD32
exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16
Errors: Alloc , Colormap , Name

This request looks up the named color with respect to the screen associated with the colormap. Then, it does an AllocColor
on cmap. The name should use the ISO Latin-1 encoding, and uppercase and lowercase do not matter. The exact RGB values
specify the true values for the color, and the visual values specify the values actually used in the colormap.

AllocColorCells

cmap: COLORMAP

X Window System Protocol
51 / 159

colors, planes: CARD16
contiguous: BOOL
->
pixels, masks: LISTofCARD32
Errors: Alloc , Colormap , Value

The number of colors must be positive, and the number of planes must be nonnegative (or a Value error results). If C colors and P
planes are requested, then C pixels and P masks are returned. No mask will have any bits in common with any other mask or with
any of the pixels. By ORing together masks and pixels, C*%2 sup P% distinct pixels can be produced; all of these are allocated
writable by the request. For GrayScale or PseudoColor , each mask will have exactly one bit set to 1; for DirectColor , each
will have exactly three bits set to 1. If contiguous is True and if all masks are ORed together, a single contiguous set of bits will
be formed for GrayScale or PseudoColor , and three contiguous sets of bits (one within each pixel subfield) for DirectColor .
The RGB values of the allocated entries are undefined.

AllocColorPlanes

cmap: COLORMAP
colors, reds, greens, blues: CARD16
contiguous: BOOL
->
pixels: LISTofCARD32
red-mask, green-mask, blue-mask: CARD32
Errors: Alloc , Colormap , Value

The number of colors must be positive, and the reds, greens, and blues must be nonnegative (or a Value error results). If C colors,
R reds, G greens, and B blues are requested, then C pixels are returned, and the masks have R, G, and B bits set, respectively.
If contiguous is True , then each mask will have a contiguous set of bits. No mask will have any bits in common with any
other mask or with any of the pixels. For DirectColor , each mask will lie within the corresponding pixel subfield. By ORing
together subsets of masks with pixels, C*%2 sup R+G+B% distinct pixels can be produced; all of these are allocated writable
by the request. The initial RGB values of the allocated entries are undefined. In the colormap, there are only C*%2 sup R%
independent red entries, C*%2 sup G% independent green entries, and C*%2 sup B% independent blue entries. This is true even
for PseudoColor . When the colormap entry for a pixel value is changed using StoreColors or StoreNamedColor , the pixel
is decomposed according to the masks and the corresponding independent entries are updated.

FreeColors

cmap: COLORMAP
pixels: LISTofCARD32
plane-mask: CARD32
Errors: Access , Colormap , Value

The plane-mask should not have any bits in common with any of the pixels. The set of all pixels is produced by ORing together
subsets of plane-mask with the pixels. The request frees all of these pixels that were allocated by the client (using AllocColor ,
AllocNamedColor , AllocColorCells , and AllocColorPlanes). Note that freeing an individual pixel obtained from AllocCol-
orPlanes may not actually allow it to be reused until all of its related pixels are also freed. Similarly, a read-only entry is not
actually freed until it has been freed by all clients, and if a client allocates the same read-only entry multiple times, it must free
the entry that many times before the entry is actually freed.

All specified pixels that are allocated by the client in cmap are freed, even if one or more pixels produce an error. A Value error
is generated if a specified pixel is not a valid index into cmap. An Access error is generated if a specified pixel is not allocated
by the client (that is, is unallocated or is only allocated by another client) or if the colormap was created with all entries writable
(using an alloc value of All in CreateColormap). If more than one pixel is in error, it is arbitrary as to which pixel is reported.

StoreColors

cmap: COLORMAP
items: LISTofCOLORITEM

X Window System Protocol
52 / 159

where:

COLORITEM: [pixel: CARD32
do-red, do-green, do-blue: BOOL
red, green, blue: CARD16]

Errors: Access, Colormap, Value

This request changes the colormap entries of the specified pixels. The do-red, do-green, and do-blue fields indicate which
components should actually be changed. If the colormap is an installed map for its screen, the changes are visible immediately.

All specified pixels that are allocated writable in cmap (by any client) are changed, even if one or more pixels produce an error.
A Value error is generated if a specified pixel is not a valid index into cmap, and an Access error is generated if a specified pixel
is unallocated or is allocated read-only. If more than one pixel is in error, it is arbitrary as to which pixel is reported.

StoreNamedColor

cmap: COLORMAP
pixel: CARD32
name: STRING8
do-red, do-green, do-blue: BOOL
Errors: Access , Colormap , Name , Value

This request looks up the named color with respect to the screen associated with cmap and then does a StoreColors in cmap.
The name should use the ISO Latin-1 encoding, and uppercase and lowercase do not matter. The Access and Value errors are
the same as in StoreColors .

QueryColors

cmap: COLORMAP
pixels: LISTofCARD32
->
colors: LISTofRGB
where:
RGB: [red, green, blue: CARD16]
Errors: Colormap , Value

This request returns the hardware-specific color values stored in cmap for the specified pixels. The values returned for an
unallocated entry are undefined. A Value error is generated if a pixel is not a valid index into cmap. If more than one pixel is in
error, it is arbitrary as to which pixel is reported.

LookupColor

cmap: COLORMAP
name: STRING8
->
exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16
Errors: Colormap , Name

This request looks up the string name of a color with respect to the screen associated with cmap and returns both the exact color
values and the closest values provided by the hardware with respect to the visual type of cmap. The name should use the ISO
Latin-1 encoding, and uppercase and lowercase do not matter.

CreateCursor

cid: CURSOR
source: PIXMAP

X Window System Protocol
53 / 159

mask: PIXMAP or None
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
x, y: CARD16
Errors: Alloc , IDChoice , Match , Pixmap

This request creates a cursor and associates identifier cid with it. The foreground and background RGB values must be specified,
even if the server only has a StaticGray or GrayScale screen. The foreground is used for the bits set to 1 in the source, and
the background is used for the bits set to 0. Both source and mask (if specified) must have depth one (or a Match error results),
but they can have any root. The mask pixmap defines the shape of the cursor. That is, the bits set to 1 in the mask define which
source pixels will be displayed, and where the mask has bits set to 0, the corresponding bits of the source pixmap are ignored. If
no mask is given, all pixels of the source are displayed. The mask, if present, must be the same size as the source (or a Match
error results). The x and y coordinates define the hotspot relative to the source’s origin and must be a point within the source (or
a Match error results).

The components of the cursor may be transformed arbitrarily to meet display limitations.

The pixmaps can be freed immediately if no further explicit references to them are to be made.

Subsequent drawing in the source or mask pixmap has an undefined effect on the cursor. The server might or might not make a
copy of the pixmap.

CreateGlyphCursor

cid: CURSOR
source-font: FONT
mask-font: FONT or None
source-char, mask-char: CARD16
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
Errors: Alloc , Font , IDChoice , Value

This request is similar to CreateCursor , except the source and mask bitmaps are obtained from the specified font glyphs. The
source-char must be a defined glyph in source-font, and if mask-font is given, mask-char must be a defined glyph in mask-font
(or a Value error results). The mask font and character are optional. The origins of the source and mask (if it is defined) glyphs
are positioned coincidently and define the hotspot. The source and mask need not have the same bounding box metrics, and there
is no restriction on the placement of the hotspot relative to the bounding boxes. If no mask is given, all pixels of the source are
displayed. Note that source-char and mask-char are CARD16, not CHAR2B. For 2-byte matrix fonts, the 16-bit value should be
formed with byte1 in the most significant byte and byte2 in the least significant byte.

The components of the cursor may be transformed arbitrarily to meet display limitations.

The fonts can be freed immediately if no further explicit references to them are to be made.

FreeCursor

cursor: CURSOR
Errors: Cursor

This request deletes the association between the resource ID and the cursor. The cursor storage will be freed when no other
resource references it.

RecolorCursor

cursor: CURSOR
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
Errors: Cursor

X Window System Protocol
54 / 159

This request changes the color of a cursor. If the cursor is being displayed on a screen, the change is visible immediately.

QueryBestSize

class: { Cursor , Tile , Stipple }
drawable: DRAWABLE
width, height: CARD16
->
width, height: CARD16
Errors: Drawable , Match , Value

This request returns the best size that is closest to the argument size. For Cursor , this is the largest size that can be fully
displayed. For Tile , this is the size that can be tiled fastest. For Stipple , this is the size that can be stippled fastest.

For Cursor , the drawable indicates the desired screen. For Tile and Stipple , the drawable indicates the screen and also
possibly the window class and depth. An InputOnly window cannot be used as the drawable for Tile or Stipple (or a Match
error results).

QueryExtension

name: STRING8
->
present: BOOL
major-opcode: CARD8
first-event: CARD8
first-error: CARD8

This request determines if the named extension is present. If so, the major opcode for the extension is returned, if it has one.
Otherwise, zero is returned. Any minor opcode and the request formats are specific to the extension. If the extension involves
additional event types, the base event type code is returned. Otherwise, zero is returned. The format of the events is specific to
the extension. If the extension involves additional error codes, the base error code is returned. Otherwise, zero is returned. The
format of additional data in the errors is specific to the extension.

The extension name should use the ISO Latin-1 encoding, and uppercase and lowercase matter.

ListExtensions

->
names: LISTofSTRING8

This request returns a list of all extensions supported by the server.

SetModifierMapping

keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE
->
status: { Success , Busy , Failed }
Errors: Alloc , Value

This request specifies the keycodes (if any) of the keys to be used as modifiers. The number of keycodes in the list must
be 8*keycodes-per-modifier (or a Length error results). The keycodes are divided into eight sets, with each set containing
keycodes-per-modifier elements. The sets are assigned to the modifiers Shift , Lock , Control , Mod1 , Mod2 , Mod3 ,
Mod4 , and Mod5 , in order. Only nonzero keycode values are used within each set; zero values are ignored. All of the nonzero
keycodes must be in the range specified by min-keycode and max-keycode in the connection setup (or a Value error results). The
order of keycodes within a set does not matter. If no nonzero values are specified in a set, the use of the corresponding modifier
is disabled, and the modifier bit will always be zero. Otherwise, the modifier bit will be one whenever at least one of the keys in
the corresponding set is in the down position.

X Window System Protocol
55 / 159

A server can impose restrictions on how modifiers can be changed (for example, if certain keys do not generate up transitions in
hardware, if auto-repeat cannot be disabled on certain keys, or if multiple keys per modifier are not supported). The status reply
is Failed if some such restriction is violated, and none of the modifiers is changed.

If the new nonzero keycodes specified for a modifier differ from those currently defined and any (current or new) keys for that
modifier are logically in the down state, then the status reply is Busy , and none of the modifiers is changed.

This request generates a MappingNotify event on a Success status.

GetModifierMapping

->
keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

This request returns the keycodes of the keys being used as modifiers. The number of keycodes in the list is 8*keycodes-
per-modifier. The keycodes are divided into eight sets, with each set containing keycodes-per-modifier elements. The sets are
assigned to the modifiers Shift , Lock , Control , Mod1 , Mod2 , Mod3 , Mod4 , and Mod5 , in order. The keycodes-per-
modifier value is chosen arbitrarily by the server; zeroes are used to fill in unused elements within each set. If only zero values
are given in a set, the use of the corresponding modifier has been disabled. The order of keycodes within each set is chosen
arbitrarily by the server.

ChangeKeyboardMapping

first-keycode: KEYCODE
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM
Errors: Alloc , Value

This request defines the symbols for the specified number of keycodes, starting with the specified keycode. The symbols for
keycodes outside this range remained unchanged. The number of elements in the keysyms list must be a multiple of keysyms-
per-keycode (or a Length error results). The first-keycode must be greater than or equal to min-keycode as returned in the
connection setup (or a Value error results) and: first-keycode + (keysyms-length / keysyms-per-keycode) - 1

must be less than or equal to max-keycode as returned in the connection setup (or a Value error results). KEYSYM number N
(counting from zero) for keycode K has an index (counting from zero) of: (K - first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode can be chosen arbitrarily by the client to be large enough to hold all desired symbols. A
special KEYSYM value of NoSymbol should be used to fill in unused elements for individual keycodes. It is legal for NoSymbol
to appear in nontrailing positions of the effective list for a keycode.

This request generates a MappingNotify event.

There is no requirement that the server interpret this mapping; it is merely stored for reading and writing by clients (see section
5).

GetKeyboardMapping

first-keycode: KEYCODE
count: CARD8
->
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM
Errors: Value

This request returns the symbols for the specified number of keycodes, starting with the specified keycode. The first-keycode
must be greater than or equal to min-keycode as returned in the connection setup (or a Value error results), and: first-keycode +
count - 1

must be less than or equal to max-keycode as returned in the connection setup (or a Value error results). The number of elements
in the keysyms list is: count * keysyms-per-keycode

X Window System Protocol
56 / 159

and KEYSYM number N (counting from zero) for keycode K has an index (counting from zero) of: (K - first-keycode) *
keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode value is chosen arbitrarily by the server to be large enough to report all requested symbols.
A special KEYSYM value of NoSymbol is used to fill in unused elements for individual keycodes.

ChangeKeyboardControl

value-mask: BITMASK
value-list: LISTofVALUE
Errors: Match, Value

This request controls various aspects of the keyboard. The value-mask and value-list specify which controls are to be changed.
The possible values are:

Control Type
key-click-percent INT8
bell-percent INT8
bell-pitch INT16
bell-duration INT16
led CARD8
led-mode { On, Off }
key KEYCODE
auto-repeat-mode { On, Off, Default }

The key-click-percent sets the volume for key clicks between 0 (off) and 100 (loud) inclusive, if possible. Setting to -1 restores
the default. Other negative values generate a Value error.

The bell-percent sets the base volume for the bell between 0 (off) and 100 (loud) inclusive, if possible. Setting to -1 restores the
default. Other negative values generate a Value error.

The bell-pitch sets the pitch (specified in Hz) of the bell, if possible. Setting to -1 restores the default. Other negative values
generate a Value error.

The bell-duration sets the duration of the bell (specified in milliseconds), if possible. Setting to -1 restores the default. Other
negative values generate a Value error.

If both led-mode and led are specified, then the state of that LED is changed, if possible. If only led-mode is specified, then the
state of all LEDs are changed, if possible. At most 32 LEDs, numbered from one, are supported. No standard interpretation of
LEDs is defined. It is a Match error if an led is specified without an led-mode.

If both auto-repeat-mode and key are specified, then the auto-repeat mode of that key is changed, if possible. If only auto-repeat-
mode is specified, then the global auto-repeat mode for the entire keyboard is changed, if possible, without affecting the per-key
settings. It is a Match error if a key is specified without an auto-repeat-mode. Each key has an individual mode of whether or
not it should auto-repeat and a default setting for that mode. In addition, there is a global mode of whether auto-repeat should be
enabled or not and a default setting for that mode. When the global mode is On , keys should obey their individual auto-repeat
modes. When the global mode is Off , no keys should auto-repeat. An auto-repeating key generates alternating KeyPress and
KeyRelease events. When a key is used as a modifier, it is desirable for the key not to auto-repeat, regardless of the auto-repeat
setting for that key.

A bell generator connected with the console but not directly on the keyboard is treated as if it were part of the keyboard.

The order in which controls are verified and altered is server-dependent. If an error is generated, a subset of the controls may
have been altered.

GetKeyboardControl

->
key-click-percent: CARD8
bell-percent: CARD8
bell-pitch: CARD16

X Window System Protocol
57 / 159

bell-duration: CARD16
led-mask: CARD32
global-auto-repeat: { On , Off }
auto-repeats: LISTofCARD8

This request returns the current control values for the keyboard. For the LEDs, the least significant bit of led-mask corresponds
to LED one, and each one bit in led-mask indicates an LED that is lit. The auto-repeats is a bit vector; each one bit indicates that
auto-repeat is enabled for the corresponding key. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for
keys 8N to 8N + 7, with the least significant bit in the byte representing key 8N.

Bell

percent: INT8
Errors: Value

This request rings the bell on the keyboard at a volume relative to the base volume for the keyboard, if possible. Percent can
range from -100 to 100 inclusive (or a Value error results). The volume at which the bell is rung when percent is nonnegative is:
base - [(base * percent) / 100] + percent

When percent is negative, it is: base + [(base * percent) / 100]

SetPointerMapping

map: LISTofCARD8
->
status: { Success , Busy }
Errors: Value

This request sets the mapping of the pointer. Elements of the list are indexed starting from one. The length of the list must be the
same as GetPointerMapping would return (or a Value error results). The index is a core button number, and the element of the
list defines the effective number.

A zero element disables a button. Elements are not restricted in value by the number of physical buttons, but no two elements
can have the same nonzero value (or a Value error results).

If any of the buttons to be altered are logically in the down state, the status reply is Busy , and the mapping is not changed.

This request generates a MappingNotify event on a Success status.

GetPointerMapping

->
map: LISTofCARD8

This request returns the current mapping of the pointer. Elements of the list are indexed starting from one. The length of the list
indicates the number of physical buttons.

The nominal mapping for a pointer is the identity mapping: map[i]=i.

ChangePointerControl

do-acceleration, do-threshold: BOOL
acceleration-numerator, acceleration-denominator: INT16
threshold: INT16
Errors: Value

This request defines how the pointer moves. The acceleration is a multiplier for movement expressed as a fraction. For example,
specifying 3/1 means the pointer moves three times as fast as normal. The fraction can be rounded arbitrarily by the server.
Acceleration only takes effect if the pointer moves more than threshold number of pixels at once and only applies to the amount

X Window System Protocol
58 / 159

beyond the threshold. Setting a value to -1 restores the default. Other negative values generate a Value error, as does a zero
value for acceleration-denominator.

GetPointerControl

->
acceleration-numerator, acceleration-denominator: CARD16
threshold: CARD16

This request returns the current acceleration and threshold for the pointer.

SetScreenSaver

timeout, interval: INT16
prefer-blanking: { Yes , No , Default }
allow-exposures: { Yes , No , Default }
Errors: Value

The timeout and interval are specified in seconds; setting a value to -1 restores the default. Other negative values generate a
Value error. If the timeout value is zero, screen-saver is disabled (but an activated screen-saver is not deactivated). If the timeout
value is nonzero, screen-saver is enabled. Once screen-saver is enabled, if no input from the keyboard or pointer is generated for
timeout seconds, screen-saver is activated. For each screen, if blanking is preferred and the hardware supports video blanking,
the screen will simply go blank. Otherwise, if either exposures are allowed or the screen can be regenerated without sending
exposure events to clients, the screen is changed in a server-dependent fashion to avoid phosphor burn. Otherwise, the state of the
screens does not change, and screen-saver is not activated. At the next keyboard or pointer input or at the next ForceScreenSaver
with mode Reset , screen-saver is deactivated, and all screen states are restored.

If the server-dependent screen-saver method is amenable to periodic change, interval serves as a hint about how long the change
period should be, with zero hinting that no periodic change should be made. Examples of ways to change the screen include
scrambling the color map periodically, moving an icon image about the screen periodically, or tiling the screen with the root
window background tile, randomly reorigined periodically.

GetScreenSaver

->
timeout, interval: CARD16
prefer-blanking: { Yes , No }
allow-exposures: { Yes , No }

This request returns the current screen-saver control values.

ForceScreenSaver

mode: { Activate , Reset }
Errors: Value

If the mode is Activate and screen-saver is currently deactivated, then screen-saver is activated (even if screen-saver has been
disabled with a timeout value of zero). If the mode is Reset and screen-saver is currently enabled, then screen-saver is deactivated
(if it was activated), and the activation timer is reset to its initial state as if device input had just been received.

ChangeHosts

mode: { Insert , Delete }
host: HOST
Errors: Access , Value

This request adds or removes the specified host from the access control list. When the access control mechanism is enabled and

X Window System Protocol
59 / 159

a client attempts to establish a connection to the server, the host on which the client resides must be in the access control list, or
the client must have been granted permission by a server-dependent method, or the server will refuse the connection.

The client must reside on the same host as the server and/or have been granted permission by a server-dependent method to
execute this request (or an Access error results).

An initial access control list can usually be specified, typically by naming a file that the server reads at startup and reset.

The following address families are defined. A server is not required to support these families and may support families not listed
here. Use of an unsupported family, an improper address format, or an improper address length within a supported family results
in a Value error.

For the Internet family, the address must be four bytes long. The address bytes are in standard IP order; the server performs no
automatic swapping on the address bytes. The Internet family supports IP version 4 addresses only.

For the InternetV6 family, the address must be sixteen bytes long. The address bytes are in standard IP order; the server performs
no automatic swapping on the address bytes. The InternetV6 family supports IP version 6 addresses only.

For the DECnet family, the server performs no automatic swapping on the address bytes. A Phase IV address is two bytes long:
the first byte contains the least significant eight bits of the node number, and the second byte contains the most significant two
bits of the node number in the least significant two bits of the byte and the area in the most significant six bits of the byte.

For the Chaos family, the address must be two bytes long. The host number is always the first byte in the address, and the subnet
number is always the second byte. The server performs no automatic swapping on the address bytes.

For the ServerInterpreted family, the address may be of any length up to 65535 bytes. The address consists of two strings of
ASCII characters, separated by a byte with a value of 0. The first string represents the type of address, and the second string
contains the address value. Address types and the syntax for their associated values will be registered via the X.Org Registry.
Implementors who wish to add implementation specific types may register a unique prefix with the X.Org registry to prevent
namespace collisions.

Use of a host address in the ChangeHosts request is deprecated. It is only useful when a host has a unique, constant address,
a requirement that is increasingly unmet as sites adopt dynamically assigned addresses, network address translation gateways,
IPv6 link local addresses, and various other technologies. It also assumes all users of a host share equivalent access rights, and
as such has never been suitable for many multi-user machine environments. Instead, more secure forms of authentication, such
as those based on shared secrets or public key encryption, are recommended.

ListHosts

->
mode: { Enabled , Disabled }
hosts: LISTofHOST

This request returns the hosts on the access control list and whether use of the list at connection setup is currently enabled or
disabled.

Each HOST is padded to a multiple of four bytes.

SetAccessControl

mode: { Enable , Disable }
Errors: Access , Value

This request enables or disables the use of the access control list at connection setups.

The client must reside on the same host as the server and/or have been granted permission by a server-dependent method to
execute this request (or an Access error results).

SetCloseDownMode

mode: { Destroy , RetainPermanent , RetainTemporary }
Errors: Value

X Window System Protocol
60 / 159

This request defines what will happen to the client’s resources at connection close. A connection starts in Destroy mode. The
meaning of the close-down mode is described in section 10.

KillClient

resource: CARD32 or AllTemporary
Errors: Value

If a valid resource is specified, KillClient forces a close-down of the client that created the resource. If the client has already
terminated in either RetainPermanent or RetainTemporary mode, all of the client’s resources are destroyed (see section 10).
If AllTemporary is specified, then the resources of all clients that have terminated in RetainTemporary are destroyed.

NoOperation

This request has no arguments and no results, but the request length field allows the request to be any multiple of four bytes in
length. The bytes contained in the request are uninterpreted by the server.

This request can be used in its minimum four byte form as padding where necessary by client libraries that find it convenient to
force requests to begin on 64-bit boundaries.

X Window System Protocol
61 / 159

Chapter 10

Connection Close

At connection close, all event selections made by the client are discarded. If the client has the pointer actively grabbed, an
UngrabPointer is performed. If the client has the keyboard actively grabbed, an UngrabKeyboard is performed. All passive
grabs by the client are released. If the client has the server grabbed, an UngrabServer is performed. All selections (see
SetSelectionOwner request) owned by the client are disowned. If close-down mode (see SetCloseDownMode request) is
RetainPermanent or RetainTemporary , then all resources (including colormap entries) allocated by the client are marked
as permanent or temporary, respectively (but this does not prevent other clients from explicitly destroying them). If the mode is
Destroy , all of the client’s resources are destroyed.

When a client’s resources are destroyed, for each window in the client’s save-set, if the window is an inferior of a window
created by the client, the save-set window is reparented to the closest ancestor such that the save-set window is not an inferior
of a window created by the client. If the save-set window is unmapped, a MapWindow request is performed on it (even if it
was not an inferior of a window created by the client). The reparenting leaves unchanged the absolute coordinates (with respect
to the root window) of the upper-left outer corner of the save-set window. After save-set processing, all windows created by the
client are destroyed. For each nonwindow resource created by the client, the appropriate Free request is performed. All colors
and colormap entries allocated by the client are freed.

A server goes through a cycle of having no connections and having some connections. At every transition to the state of having
no connections as a result of a connection closing with a Destroy close-down mode, the server resets its state as if it had
just been started. This starts by destroying all lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode. It additionally includes deleting all but the predefined atom identifiers, deleting all properties on all
root windows, resetting all device maps and attributes (key click, bell volume, acceleration), resetting the access control list,
restoring the standard root tiles and cursors, restoring the default font path, and restoring the input focus to state PointerRoot .

Note that closing a connection with a close-down mode of RetainPermanent or RetainTemporary will not cause the server to
reset.

X Window System Protocol
62 / 159

Chapter 11

Events

When a button press is processed with the pointer in some window W and no active pointer grab is in progress, the ancestors of
W are searched from the root down, looking for a passive grab to activate. If no matching passive grab on the button exists, then
an active grab is started automatically for the client receiving the event, and the last-pointer-grab time is set to the current server
time. The effect is essentially equivalent to a GrabButton with arguments:

Argument Value
event-window Event window
event-mask Client’s selected pointer events on the event window
pointer-mode and keyboard-mode Asynchronous

owner-events True if the client has OwnerGrabButton selected on the
event window, otherwise False

confine-to None
cursor None

The grab is terminated automatically when the logical state of the pointer has all buttons released. UngrabPointer and Change-
ActivePointerGrab can both be used to modify the active grab.

KeyPress

KeyRelease
ButtonPress
ButtonRelease
MotionNotify

root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
detail: <see below>
state: SETofKEYBUTMASK
time: TIMESTAMP

These events are generated either when a key or button logically changes state or when the pointer logically moves. The gen-
eration of these logical changes may lag the physical changes if device event processing is frozen. Note that KeyPress and
KeyRelease are generated for all keys, even those mapped to modifier bits. The source of the event is the window the pointer is
in. The window the event is reported with respect to is called the event window. The event window is found by starting with the
source window and looking up the hierarchy for the first window on which any client has selected interest in the event (provided
no intervening window prohibits event generation by including the event type in its do-not-propagate-mask). The actual window
used for reporting can be modified by active grabs and, in the case of keyboard events, can be modified by the focus window.

The root is the root window of the source window, and root-x and root-y are the pointer coordinates relative to root’s origin at

X Window System Protocol
63 / 159

the time of the event. Event is the event window. If the event window is on the same screen as root, then event-x and event-y are
the pointer coordinates relative to the event window’s origin. Otherwise, event-x and event-y are zero. If the source window is
an inferior of the event window, then child is set to the child of the event window that is an ancestor of (or is) the source window.
Otherwise, it is set to None . The state component gives the logical state of the buttons and modifier keys just before the event.
The detail component type varies with the event type:

Event Component
KeyPress, KeyRelease KEYCODE
ButtonPress, ButtonRelease BUTTON
MotionNotify { Normal Hint }

MotionNotify events are only generated when the motion begins and ends in the window. The granularity of motion events is
not guaranteed, but a client selecting for motion events is guaranteed to get at least one event when the pointer moves and comes
to rest. Selecting PointerMotion receives events independent of the state of the pointer buttons. By selecting some subset of
Button[1-5]Motion instead, MotionNotify events will only be received when one or more of the specified buttons are pressed.
By selecting ButtonMotion , MotionNotify events will be received only when at least one button is pressed. The events are
always of type MotionNotify , independent of the selection. If PointerMotionHint is selected, the server is free to send only
one MotionNotify event (with detail Hint) to the client for the event window until either the key or button state changes, the
pointer leaves the event window, or the client issues a QueryPointer or GetMotionEvents request.

EnterNotify

LeaveNotify
root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
mode: { Normal , Grab , Ungrab }
detail: { Ancestor , Virtual , Inferior , Nonlinear , NonlinearVirtual }
focus: BOOL
state: SETofKEYBUTMASK
time: TIMESTAMP

If pointer motion or window hierarchy change causes the pointer to be in a different window than before, EnterNotify and
LeaveNotify events are generated instead of a MotionNotify event. Only clients selecting EnterWindow on a window receive
EnterNotify events, and only clients selecting LeaveWindow receive LeaveNotify events. The pointer position reported in the
event is always the final position, not the initial position of the pointer. The root is the root window for this position, and root-x
and root-y are the pointer coordinates relative to root’s origin at the time of the event. Event is the event window. If the event
window is on the same screen as root, then event-x and event-y are the pointer coordinates relative to the event window’s origin.
Otherwise, event-x and event-y are zero. In a LeaveNotify event, if a child of the event window contains the initial position of
the pointer, then the child component is set to that child. Otherwise, it is None . For an EnterNotify event, if a child of the
event window contains the final pointer position, then the child component is set to that child. Otherwise, it is None . If the event
window is the focus window or an inferior of the focus window, then focus is True . Otherwise, focus is False .

Normal pointer motion events have mode Normal . Pseudo-motion events when a grab activates have mode Grab , and pseudo-
motion events when a grab deactivates have mode Ungrab .

All EnterNotify and LeaveNotify events caused by a hierarchy change are generated after any hierarchy event caused by
that change (that is, UnmapNotify , MapNotify , ConfigureNotify , GravityNotify , CirculateNotify), but the ordering of
EnterNotify and LeaveNotify events with respect to FocusOut , VisibilityNotify , and Expose events is not constrained.

Normal events are generated as follows:

When the pointer moves from window A to window B and A is an inferior of B:

• LeaveNotify with detail Ancestor is generated on A.

• LeaveNotify with detail Virtual is generated on each window between A and B exclusive (in that order).

X Window System Protocol
64 / 159

• EnterNotify with detail Inferior is generated on B.

When the pointer moves from window A to window B and B is an inferior of A:

• LeaveNotify with detail Inferior is generated on A.

• EnterNotify with detail Virtual is generated on each window between A and B exclusive (in that order).

• EnterNotify with detail Ancestor is generated on B.

When the pointer moves from window A to window B and window C is their least common ancestor:

• LeaveNotify with detail Nonlinear is generated on A.

• LeaveNotify with detail NonlinearVirtual is generated on each window between A and C exclusive (in that order).

• EnterNotify with detail NonlinearVirtual is generated on each window between C and B exclusive (in that order).

• EnterNotify with detail Nonlinear is generated on B.

When the pointer moves from window A to window B on different screens:

• LeaveNotify with detail Nonlinear is generated on A.

• If A is not a root window, LeaveNotify with detail NonlinearVirtual is generated on each window above A up to and
including its root (in order).

• If B is not a root window, EnterNotify with detail NonlinearVirtual is generated on each window from B’s root down to but
not including B (in order).

• EnterNotify with detail Nonlinear is generated on B.

When a pointer grab activates (but after any initial warp into a confine-to window and before generating any actual ButtonPress
event that activates the grab), G is the grab-window for the grab, and P is the window the pointer is in:

• EnterNotify and LeaveNotify events with mode Grab are generated (as for Normal above) as if the pointer were to suddenly
warp from its current position in P to some position in G. However, the pointer does not warp, and the pointer position is used
as both the initial and final positions for the events.

When a pointer grab deactivates (but after generating any actual ButtonRelease event that deactivates the grab), G is the grab-
window for the grab, and P is the window the pointer is in:

• EnterNotify and LeaveNotify events with mode Ungrab are generated (as for Normal above) as if the pointer were to
suddenly warp from some position in G to its current position in P. However, the pointer does not warp, and the current pointer
position is used as both the initial and final positions for the events.

FocusIn

FocusOut

event: WINDOW
mode: { Normal , WhileGrabbed , Grab , Ungrab }
detail: { Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual, Pointer,
PointerRoot, None }

These events are generated when the input focus changes and are reported to clients selecting FocusChange on the window.

X Window System Protocol
65 / 159

Events generated by SetInputFocus when the keyboard is not grabbed have mode Normal . Events generated by SetInputFocus
when the keyboard is grabbed have mode WhileGrabbed . Events generated when a keyboard grab activates have mode Grab ,
and events generated when a keyboard grab deactivates have mode Ungrab .

All FocusOut events caused by a window unmap are generated after any UnmapNotify event, but the ordering of FocusOut
with respect to generated EnterNotify , LeaveNotify , VisibilityNotify , and Expose events is not constrained.

Normal and WhileGrabbed events are generated as follows:

When the focus moves from window A to window B, A is an inferior of B, and the pointer is in window P:

• FocusOut with detail Ancestor is generated on A.

• FocusOut with detail Virtual is generated on each window between A and B exclusive (in order).

• FocusIn with detail Inferior is generated on B.

• If P is an inferior of B but P is not A or an inferior of A or an ancestor of A, FocusIn with detail Pointer is generated on each
window below B down to and including P (in order).

When the focus moves from window A to window B, B is an inferior of A, and the pointer is in window P:

• If P is an inferior of A but P is not an inferior of B or an ancestor of B, FocusOut with detail Pointer is generated on each
window from P up to but not including A (in order).

• FocusOut with detail Inferior is generated on A.

• FocusIn with detail Virtual is generated on each window between A and B exclusive (in order).

• FocusIn with detail Ancestor is generated on B.

When the focus moves from window A to window B, window C is their least common ancestor, and the pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each window from P up to but not including A (in
order).

• FocusOut with detail Nonlinear is generated on A.

• FocusOut with detail NonlinearVirtual is generated on each window between A and C exclusive (in order).

• FocusIn with detail NonlinearVirtual is generated on each window between C and B exclusive (in order).

• FocusIn with detail Nonlinear is generated on B.

• If P is an inferior of B, FocusIn with detail Pointer is generated on each window below B down to and including P (in order).

When the focus moves from window A to window B on different screens and the pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each window from P up to but not including A (in
order).

• FocusOut with detail Nonlinear is generated on A.

• If A is not a root window, FocusOut with detail NonlinearVirtual is generated on each window above A up to and including
its root (in order).

• If B is not a root window, FocusIn with detail NonlinearVirtual is generated on each window from B’s root down to but not
including B (in order).

• FocusIn with detail Nonlinear is generated on B.

• If P is an inferior of B, FocusIn with detail Pointer is generated on each window below B down to and including P (in order).

X Window System Protocol
66 / 159

When the focus moves from window A to PointerRoot (or None) and the pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each window from P up to but not including A (in
order).

• FocusOut with detail Nonlinear is generated on A.

• If A is not a root window, FocusOut with detail NonlinearVirtual is generated on each window above A up to and including
its root (in order).

• FocusIn with detail PointerRoot (or None) is generated on all root windows.

• If the new focus is PointerRoot , FocusIn with detail Pointer is generated on each window from P’s root down to and
including P (in order).

When the focus moves from PointerRoot (or None) to window A and the pointer is in window P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is generated on each window from P up to and including P’s
root (in order).

• FocusOut with detail PointerRoot (or None) is generated on all root windows.

• If A is not a root window, FocusIn with detail NonlinearVirtual is generated on each window from A’s root down to but not
including A (in order).

• FocusIn with detail Nonlinear is generated on A.

• If P is an inferior of A, FocusIn with detail Pointer is generated on each window below A down to and including P (in order).

When the focus moves from PointerRoot to None (or vice versa) and the pointer is in window P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is generated on each window from P up to and including P’s
root (in order).

• FocusOut with detail PointerRoot (or None) is generated on all root windows.

• FocusIn with detail None (or PointerRoot) is generated on all root windows.

• If the new focus is PointerRoot , FocusIn with detail Pointer is generated on each window from P’s root down to and
including P (in order).

When a keyboard grab activates (but before generating any actual KeyPress event that activates the grab), G is the grab-window
for the grab, and F is the current focus:

• FocusIn and FocusOut events with mode Grab are generated (as for Normal above) as if the focus were to change from F
to G.

When a keyboard grab deactivates (but after generating any actual KeyRelease event that deactivates the grab), G is the grab-
window for the grab, and F is the current focus:

• FocusIn and FocusOut events with mode Ungrab are generated (as for Normal above) as if the focus were to change from
G to F.

KeymapNotify

keys: LISTofCARD8

X Window System Protocol
67 / 159

The value is a bit vector as described in QueryKeymap . This event is reported to clients selecting KeymapState on a window
and is generated immediately after every EnterNotify and FocusIn .

Expose

window: WINDOW
x, y, width, height: CARD16
count: CARD16

This event is reported to clients selecting Exposure on the window. It is generated when no valid contents are available for
regions of a window, and either the regions are visible, the regions are viewable and the server is (perhaps newly) maintaining
backing store on the window, or the window is not viewable but the server is (perhaps newly) honoring window’s backing-store
attribute of Always or WhenMapped . The regions are decomposed into an arbitrary set of rectangles, and an Expose event is
generated for each rectangle.

For a given action causing exposure events, the set of events for a given window are guaranteed to be reported contiguously. If
count is zero, then no more Expose events for this window follow. If count is nonzero, then at least that many more Expose
events for this window follow (and possibly more).

The x and y coordinates are relative to window’s origin and specify the upper-left corner of a rectangle. The width and height
specify the extent of the rectangle.

Expose events are never generated on InputOnly windows.

All Expose events caused by a hierarchy change are generated after any hierarchy event caused by that change (for example,
UnmapNotify , MapNotify , ConfigureNotify , GravityNotify , CirculateNotify). All Expose events on a given window
are generated after any VisibilityNotify event on that window, but it is not required that all Expose events on all windows be
generated after all Visibilitity events on all windows. The ordering of Expose events with respect to FocusOut , EnterNotify
, and LeaveNotify events is not constrained.

GraphicsExposure

drawable: DRAWABLE
x, y, width, height: CARD16
count: CARD16
major-opcode: CARD8
minor-opcode: CARD16

This event is reported to a client using a graphics context with graphics-exposures selected and is generated when a destination
region could not be computed due to an obscured or out-of-bounds source region. All of the regions exposed by a given graphics
request are guaranteed to be reported contiguously. If count is zero then no more GraphicsExposure events for this window
follow. If count is nonzero, then at least that many more GraphicsExposure events for this window follow (and possibly more).

The x and y coordinates are relative to drawable’s origin and specify the upper-left corner of a rectangle. The width and height
specify the extent of the rectangle.

The major and minor opcodes identify the graphics request used. For the core protocol, major-opcode is always CopyArea or
CopyPlane , and minor-opcode is always zero.

NoExposure

drawable: DRAWABLE
major-opcode: CARD8
minor-opcode: CARD16

This event is reported to a client using a graphics context with graphics-exposures selected and is generated when a graphics
request that might produce GraphicsExposure events does not produce any. The drawable specifies the destination used for the
graphics request.

The major and minor opcodes identify the graphics request used. For the core protocol, major-opcode is always CopyArea or

X Window System Protocol
68 / 159

CopyPlane , and the minor-opcode is always zero.

VisibilityNotify

window: WINDOW
state: { Unobscured , PartiallyObscured , FullyObscured }

This event is reported to clients selecting VisibilityChange on the window. In the following, the state of the window is calculated
ignoring all of the window’s subwindows. When a window changes state from partially or fully obscured or not viewable to
viewable and completely unobscured, an event with Unobscured is generated. When a window changes state from viewable
and completely unobscured, from viewable and completely obscured, or from not viewable, to viewable and partially obscured,
an event with PartiallyObscured is generated. When a window changes state from viewable and completely unobscured, from
viewable and partially obscured, or from not viewable to viewable and fully obscured, an event with FullyObscured is generated.

VisibilityNotify events are never generated on InputOnly windows.

All VisibilityNotify events caused by a hierarchy change are generated after any hierarchy event caused by that change (for
example, UnmapNotify , MapNotify , ConfigureNotify , GravityNotify , CirculateNotify). Any VisibilityNotify event on
a given window is generated before any Expose events on that window, but it is not required that all VisibilityNotify events
on all windows be generated before all Expose events on all windows. The ordering of VisibilityNotify events with respect to
FocusOut , EnterNotify , and LeaveNotify events is not constrained.

CreateNotify

parent, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on the parent and is generated when the window is created. The
arguments are as in the CreateWindow request.

DestroyNotify

event, window: WINDOW

This event is reported to clients selecting StructureNotify on the window and to clients selecting SubstructureNotify on the
parent. It is generated when the window is destroyed. The event is the window on which the event was generated, and the window
is the window that is destroyed.

The ordering of the DestroyNotify events is such that for any given window, DestroyNotify is generated on all inferiors of the
window before being generated on the window itself. The ordering among siblings and across subhierarchies is not otherwise
constrained.

UnmapNotify

event, window: WINDOW
from-configure: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients selecting SubstructureNotify on the
parent. It is generated when the window changes state from mapped to unmapped. The event is the window on which the event
was generated, and the window is the window that is unmapped. The from-configure flag is True if the event was generated as
a result of the window’s parent being resized when the window itself had a win-gravity of Unmap .

MapNotify

event, window: WINDOW
override-redirect: BOOL

X Window System Protocol
69 / 159

This event is reported to clients selecting StructureNotify on the window and to clients selecting SubstructureNotify on the
parent. It is generated when the window changes state from unmapped to mapped. The event is the window on which the event
was generated, and the window is the window that is mapped. The override-redirect flag is from the window’s attribute.

MapRequest

parent, window: WINDOW

This event is reported to the client selecting SubstructureRedirect on the parent and is generated when a MapWindow request
is issued on an unmapped window with an override-redirect attribute of False .

ReparentNotify

event, window, parent: WINDOW
x, y: INT16
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on either the old or the new parent and to clients selecting
StructureNotify on the window. It is generated when the window is reparented. The event is the window on which the event
was generated. The window is the window that has been rerooted. The parent specifies the new parent. The x and y coordinates
are relative to the new parent’s origin and specify the position of the upper-left outer corner of the window. The override-redirect
flag is from the window’s attribute.

ConfigureNotify

event, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
above-sibling: WINDOW or None
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients selecting SubstructureNotify on the
parent. It is generated when a ConfigureWindow request actually changes the state of the window. The event is the window on
which the event was generated, and the window is the window that is changed. The x and y coordinates are relative to the new
parent’s origin and specify the position of the upper-left outer corner of the window. The width and height specify the inside
size, not including the border. If above-sibling is None , then the window is on the bottom of the stack with respect to siblings.
Otherwise, the window is immediately on top of the specified sibling. The override-redirect flag is from the window’s attribute.

GravityNotify

event, window: WINDOW
x, y: INT16

This event is reported to clients selecting SubstructureNotify on the parent and to clients selecting StructureNotify on the
window. It is generated when a window is moved because of a change in size of the parent. The event is the window on which
the event was generated, and the window is the window that is moved. The x and y coordinates are relative to the new parent’s
origin and specify the position of the upper-left outer corner of the window.

ResizeRequest

window: WINDOW
width, height: CARD16

This event is reported to the client selecting ResizeRedirect on the window and is generated when a ConfigureWindow request
by some other client on the window attempts to change the size of the window. The width and height are the requested inside
size, not including the border.

ConfigureRequest

X Window System Protocol
70 / 159

parent, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
sibling: WINDOW or None
stack-mode: { Above , Below , TopIf , BottomIf , Opposite }
value-mask: BITMASK

This event is reported to the client selecting SubstructureRedirect on the parent and is generated when a ConfigureWindow
request is issued on the window by some other client. The value-mask indicates which components were specified in the request.
The value-mask and the corresponding values are reported as given in the request. The remaining values are filled in from
the current geometry of the window, except in the case of sibling and stack-mode, which are reported as None and Above
(respectively) if not given in the request.

CirculateNotify

event, window: WINDOW
place: { Top , Bottom }

This event is reported to clients selecting StructureNotify on the window and to clients selecting SubstructureNotify on the
parent. It is generated when the window is actually restacked from a CirculateWindow request. The event is the window on
which the event was generated, and the window is the window that is restacked. If place is Top , the window is now on top of
all siblings. Otherwise, it is below all siblings.

CirculateRequest

parent, window: WINDOW
place: { Top , Bottom }

This event is reported to the client selecting SubstructureRedirect on the parent and is generated when a CirculateWindow
request is issued on the parent and a window actually needs to be restacked. The window specifies the window to be restacked,
and the place specifies what the new position in the stacking order should be.

PropertyNotify

window: WINDOW
atom: ATOM
state: { NewValue , Deleted }
time: TIMESTAMP

This event is reported to clients selecting PropertyChange on the window and is generated with state NewValue when a
property of the window is changed using ChangeProperty or RotateProperties , even when adding zero-length data using
ChangeProperty and when replacing all or part of a property with identical data using ChangeProperty or RotateProperties
. It is generated with state Deleted when a property of the window is deleted using request DeleteProperty or GetProperty .
The timestamp indicates the server time when the property was changed.

SelectionClear

owner: WINDOW
selection: ATOM
time: TIMESTAMP

This event is reported to the current owner of a selection and is generated when a new owner is being defined by means of
SetSelectionOwner . The timestamp is the last-change time recorded for the selection. The owner argument is the window that
was specified by the current owner in its SetSelectionOwner request.

SelectionRequest

X Window System Protocol
71 / 159

owner: WINDOW
selection: ATOM
target: ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime

This event is reported to the owner of a selection and is generated when a client issues a ConvertSelection request. The
owner argument is the window that was specified in the SetSelectionOwner request. The remaining arguments are as in the
ConvertSelection request.

The owner should convert the selection based on the specified target type and send a SelectionNotify back to the requestor. A
complete specification for using selections is given in the X.Org standard Inter-Client Communication Conventions Manual.

SelectionNotify

requestor: WINDOW
selection, target: ATOM
property: ATOM or None
time: TIMESTAMP or CurrentTime

This event is generated by the server in response to a ConvertSelection request when there is no owner for the selection. When
there is an owner, it should be generated by the owner using SendEvent . The owner of a selection should send this event to
a requestor either when a selection has been converted and stored as a property or when a selection conversion could not be
performed (indicated with property None).

ColormapNotify

window: WINDOW
colormap: COLORMAP or None
new: BOOL
state: { Installed , Uninstalled }

This event is reported to clients selecting ColormapChange on the window. It is generated with value True for new when
the colormap attribute of the window is changed and is generated with value False for new when the colormap of a window is
installed or uninstalled. In either case, the state indicates whether the colormap is currently installed.

MappingNotify

request: { Modifier , Keyboard , Pointer }
first-keycode, count: CARD8

This event is sent to all clients. There is no mechanism to express disinterest in this event. The detail indicates the kind of change
that occurred: Modifiers for a successful SetModifierMapping , Keyboard for a successful ChangeKeyboardMapping ,
and Pointer for a successful SetPointerMapping . If the detail is Keyboard , then first-keycode and count indicate the range
of altered keycodes.

ClientMessage

window: WINDOW
type: ATOM
format: {8, 16, 32}
data: LISTofINT8 or LISTofINT16 or LISTofINT32

This event is only generated by clients using SendEvent . The type specifies how the data is to be interpreted by the receiving
client; the server places no interpretation on the type or the data. The format specifies whether the data should be viewed as a list
of 8-bit, 16-bit, or 32-bit quantities, so that the server can correctly byte-swap, as necessary. The data always consists of either

X Window System Protocol
72 / 159

20 8-bit values or 10 16-bit values or 5 32-bit values, although particular message types might not make use of all of these values.

X Window System Protocol
73 / 159

Chapter 12

Flow Control and Concurrency

Whenever the server is writing to a given connection, it is permissible for the server to stop reading from that connection (but if
the writing would block, it must continue to service other connections). The server is not required to buffer more than a single
request per connection at one time. For a given connection to the server, a client can block while reading from the connection
but should undertake to read (events and errors) when writing would block. Failure on the part of a client to obey this rule could
result in a deadlocked connection, although deadlock is probably unlikely unless either the transport layer has very little buffering
or the client attempts to send large numbers of requests without ever reading replies or checking for errors and events.

Whether or not a server is implemented with internal concurrency, the overall effect must be as if individual requests are executed
to completion in some serial order, and requests from a given connection must be executed in delivery order (that is, the total
execution order is a shuffle of the individual streams). The execution of a request includes validating all arguments, collecting
all data for any reply, and generating and queueing all required events. However, it does not include the actual transmission of
the reply and the events. In addition, the effect of any other cause that can generate multiple events (for example, activation of
a grab or pointer motion) must effectively generate and queue all required events indivisibly with respect to all other causes and
requests. For a request from a given client, any events destined for that client that are caused by executing the request must be
sent to the client before any reply or error is sent.

X Window System Protocol
74 / 159

Appendix A

KEYSYM Encoding

KEYSYM values are 32-bit integers that encode the symbols on the keycaps of a keyboard. The three most significant bits are
always zero, which leaves a 29-bit number space. For convenience, KEYSYM values can be viewed as split into four bytes:

• Byte 1 is the most significant eight bits (three zero bits and the most-significant five bits of the 29-bit effective value)

• Byte 2 is the next most-significant eight bits

• Byte 3 is the next most-significant eight bits

• Byte 4 is the least-significant eight bits

There are six categories of KEYSYM values.

A.1 Special KEYSYMs

There are two special values: NoSymbol and VoidSymbol . They are used to indicate the absence of symbols (see section 5).

Byte 1 Byte 2 Byte 3 Byte 4 Hex. value Name
0 0 0 0 #x00000000 NoSymbol
0 255 255 255 #x00FFFFFF VoidSymbol

A.2 Latin-1 KEYSYMs

The Latin-1 KEYSYMs occupy the range #x0020 to #x007E and #x00A0 to #00FF and represent the ISO 10646 / Unicode
characters U+0020 to U+007E and U+00A0 to U+00FF, respectively.

A.3 Unicode KEYSYMs

These occupy the range #x01000100 to #x0110FFFF and represent the ISO 10646 / Unicode characters U+0100 to U+10FFFF,
respectively. The numeric value of a Unicode KEYSYM is the Unicode position of the corresponding character plus #x01000000.
In the interest of backwards compatibility, clients should be able to process both the Unicode KEYSYM and the Legacy
KEYSYM for those characters where both exist.

Dead keys, which place an accent on the next character entered, shall be encoded as Function KEYSYMs, and not as the Unicode
KEYSYM corresponding to an equivalent combining character. Where a keycap indicates a specific function with a graphical

X Window System Protocol
75 / 159

symbol that is also available in Unicode (e.g., an upwards arrow for the cursor up function), the appropriate Function KEYSYM
should be used, and not the Unicode KEYSYM corresponding to the depicted symbol.

A.4 Function KEYSYMs

These represent keycap symbols that do not directly represent elements of a coded character set. Instead, they typically identify
a software function, mode, or operation (e.g., cursor up, caps lock, insert) that can be activated using a dedicated key. Function
KEYSYMs have zero values for bytes 1 and 2. Byte 3 distinguishes between several 8-bit sets within which byte 4 identifies the
individual function key.

Byte 3 Byte 4
255 Keyboard
254 Keyboard (XKB) Extension
253 3270

Within a national market, keyboards tend to be comparatively standard with respect to the character keys, but they can differ
significantly on the miscellaneous function keys. Some have function keys left over from early timesharing days, others were
designed for a specific application, such as text processing, web browsing, or accessing audiovisual data. The symbols on the
keycaps can differ significantly between manufacturers and national markets, even where they denote the same software function
(e.g., Ctrl in the U.S. versus Strg in Germany)

There are two ways of thinking about how to define KEYSYMs for such a world:

• The Engraving approach

• The Common approach

The Engraving approach is to create a KEYSYM for every unique key engraving. This is effectively taking the union of all key
engravings on all keyboards. For example, some keyboards label function keys across the top as F1 through Fn, and others label
them as PF1 through PFn. These would be different keys under the Engraving approach. Likewise, Lock would differ from Shift
Lock, which is different from the up-arrow symbol that has the effect of changing lowercase to uppercase. There are lots of other
aliases such as Del, DEL, Delete, Remove, and so forth. The Engraving approach makes it easy to decide if a new entry should
be added to the KEYSYM set: if it does not exactly match an existing one, then a new one is created.

The Common approach tries to capture all of the keys present on an interesting number of keyboards, folding likely aliases
into the same KEYSYM. For example, Del, DEL, and Delete are all merged into a single KEYSYM. Vendors can augment the
KEYSYM set (using the vendor-specific encoding space) to include all of their unique keys that were not included in the standard
set. Each vendor decides which of its keys map into the standard KEYSYMs, which presumably can be overridden by a user. It
is more difficult to implement this approach, because judgment is required about when a sufficient set of keyboards implements
an engraving to justify making it a KEYSYM in the standard set and about which engravings should be merged into a single
KEYSYM.

Although neither scheme is perfect or elegant, the Common approach has been selected because it makes it easier to write
a portable application. Having the Delete functionality merged into a single KEYSYM allows an application to implement
a deletion function and expect reasonable bindings on a wide set of workstations. Under the Common approach, application
writers are still free to look for and interpret vendor-specific KEYSYMs, but because they are in the extended set, the application
developer is more conscious that they are writing the application in a nonportable fashion.

The Keyboard set is a miscellaneous collection of commonly occurring keys on keyboards. Within this set, the numeric keypad
symbols are generally duplicates of symbols found on keys on the main part of the keyboard, but they are distinguished here
because they often have a distinguishable semantics associated with them.

KEYSYM value Name Set
#xFF08 BACKSPACE, BACK SPACE, BACK CHAR Keyboard
#xFF09 TAB Keyboard
#xFF0A LINEFEED, LF Keyboard

X Window System Protocol
76 / 159

KEYSYM value Name Set
#xFF0B CLEAR Keyboard
#xFF0D RETURN, ENTER Keyboard
#xFF13 PAUSE, HOLD Keyboard
#xFF14 SCROLL LOCK Keyboard
#xFF15 SYS REQ, SYSTEM REQUEST Keyboard
#xFF1B ESCAPE Keyboard
#xFF20 MULTI-KEY CHARACTER PREFACE Keyboard
#xFF21 KANJI, KANJI CONVERT Keyboard
#xFF22 MUHENKAN Keyboard
#xFF23 HENKAN MODE Keyboard
#xFF24 ROMAJI Keyboard
#xFF25 HIRAGANA Keyboard
#xFF26 KATAKANA Keyboard
#xFF27 HIRAGANA/KATAKANA TOGGLE Keyboard
#xFF28 ZENKAKU Keyboard
#xFF29 HANKAKU Keyboard
#xFF2A ZENKAKU/HANKAKU TOGGLE Keyboard
#xFF2B TOUROKU Keyboard
#xFF2C MASSYO Keyboard
#xFF2D KANA LOCK Keyboard
#xFF2E KANA SHIFT Keyboard
#xFF2F EISU SHIFT Keyboard
#xFF30 EISU TOGGLE Keyboard
#xFF31 HANGUL START/STOP (TOGGLE) Keyboard
#xFF32 HANGUL START Keyboard
#xFF33 HANGUL END, ENGLISH START Keyboard
#xFF34 START HANGUL/HANJA CONVERSION Keyboard
#xFF35 HANGUL JAMO MODE Keyboard
#xFF36 HANGUL ROMAJA MODE Keyboard
#xFF37 HANGUL CODE INPUT Keyboard
#xFF38 HANGUL JEONJA MODE Keyboard
#xFF39 HANGUL BANJA MODE Keyboard
#xFF3A HANGUL PREHANJA CONVERSION Keyboard
#xFF3B HANGUL POSTHANJA CONVERSION Keyboard
#xFF3C HANGUL SINGLE CANDIDATE Keyboard
#xFF3D HANGUL MULTIPLE CANDIDATE Keyboard
#xFF3E HANGUL PREVIOUS CANDIDATE Keyboard
#xFF3F HANGUL SPECIAL SYMBOLS Keyboard
#xFF50 HOME Keyboard
#xFF51 LEFT, MOVE LEFT, LEFT ARROW Keyboard
#xFF52 UP, MOVE UP, UP ARROW Keyboard
#xFF53 RIGHT, MOVE RIGHT, RIGHT ARROW Keyboard
#xFF54 DOWN, MOVE DOWN, DOWN ARROW Keyboard
#xFF55 PRIOR, PREVIOUS, PAGE UP Keyboard
#xFF56 NEXT, PAGE DOWN Keyboard
#xFF57 END, EOL Keyboard
#xFF58 BEGIN, BOL Keyboard
#xFF60 SELECT, MARK Keyboard
#xFF61 PRINT Keyboard
#xFF62 EXECUTE, RUN, DO Keyboard
#xFF63 INSERT, INSERT HERE Keyboard
#xFF65 UNDO, OOPS Keyboard
#xFF66 REDO, AGAIN Keyboard
#xFF67 MENU Keyboard
#xFF68 FIND, SEARCH Keyboard

X Window System Protocol
77 / 159

KEYSYM value Name Set
#xFF69 CANCEL, STOP, ABORT, EXIT Keyboard
#xFF6A HELP Keyboard
#xFF6B BREAK Keyboard
#xFF7E MODE SWITCH, SCRIPT SWITCH, CHARACTER SET SWITCH Keyboard
#xFF7F NUM LOCK Keyboard
#xFF80 KEYPAD SPACE Keyboard
#xFF89 KEYPAD TAB Keyboard
#xFF8D KEYPAD ENTER Keyboard
#xFF91 KEYPAD F1, PF1, A Keyboard
#xFF92 KEYPAD F2, PF2, B Keyboard
#xFF93 KEYPAD F3, PF3, C Keyboard
#xFF94 KEYPAD F4, PF4, D Keyboard
#xFF95 KEYPAD HOME Keyboard
#xFF96 KEYPAD LEFT Keyboard
#xFF97 KEYPAD UP Keyboard
#xFF98 KEYPAD RIGHT Keyboard
#xFF99 KEYPAD DOWN Keyboard
#xFF9A KEYPAD PRIOR, PAGE UP Keyboard
#xFF9B KEYPAD NEXT, PAGE DOWN Keyboard
#xFF9C KEYPAD END Keyboard
#xFF9D KEYPAD BEGIN Keyboard
#xFF9E KEYPAD INSERT Keyboard
#xFF9F KEYPAD DELETE Keyboard
#xFFAA KEYPAD MULTIPLICATION SIGN, ASTERISK Keyboard
#xFFAB KEYPAD PLUS SIGN Keyboard
#xFFAC KEYPAD SEPARATOR, COMMA Keyboard
#xFFAD KEYPAD MINUS SIGN, HYPHEN Keyboard
#xFFAE KEYPAD DECIMAL POINT, FULL STOP Keyboard
#xFFAF KEYPAD DIVISION SIGN, SOLIDUS Keyboard
#xFFB0 KEYPAD DIGIT ZERO Keyboard
#xFFB1 KEYPAD DIGIT ONE Keyboard
#xFFB2 KEYPAD DIGIT TWO Keyboard
#xFFB3 KEYPAD DIGIT THREE Keyboard
#xFFB4 KEYPAD DIGIT FOUR Keyboard
#xFFB5 KEYPAD DIGIT FIVE Keyboard
#xFFB6 KEYPAD DIGIT SIX Keyboard
#xFFB7 KEYPAD DIGIT SEVEN Keyboard
#xFFB8 KEYPAD DIGIT EIGHT Keyboard
#xFFB9 KEYPAD DIGIT NINE Keyboard
#xFFBD KEYPAD EQUALS SIGN Keyboard
#xFFBE F1 Keyboard
#xFFBF F2 Keyboard
#xFFC0 F3 Keyboard
#xFFC1 F4 Keyboard
#xFFC2 F5 Keyboard
#xFFC3 F6 Keyboard
#xFFC4 F7 Keyboard
#xFFC5 F8 Keyboard
#xFFC6 F9 Keyboard
#xFFC7 F10 Keyboard
#xFFC8 F11, L1 Keyboard
#xFFC9 F12, L2 Keyboard
#xFFCA F13, L3 Keyboard
#xFFCB F14, L4 Keyboard
#xFFCC F15, L5 Keyboard

X Window System Protocol
78 / 159

KEYSYM value Name Set
#xFFCD F16, L6 Keyboard
#xFFCE F17, L7 Keyboard
#xFFCF F18, L8 Keyboard
#xFFD0 F19, L9 Keyboard
#xFFD1 F20, L10 Keyboard
#xFFD2 F21, R1 Keyboard
#xFFD3 F22, R2 Keyboard
#xFFD4 F23, R3 Keyboard
#xFFD5 F24, R4 Keyboard
#xFFD6 F25, R5 Keyboard
#xFFD7 F26, R6 Keyboard
#xFFD8 F27, R7 Keyboard
#xFFD9 F28, R8 Keyboard
#xFFDA F29, R9 Keyboard
#xFFDB F30, R10 Keyboard
#xFFDC F31, R11 Keyboard
#xFFDD F32, R12 Keyboard
#xFFDE F33, R13 Keyboard
#xFFDF F34, R14 Keyboard
#xFFE0 F35, R15 Keyboard
#xFFE1 LEFT SHIFT Keyboard
#xFFE2 RIGHT SHIFT Keyboard
#xFFE3 LEFT CONTROL Keyboard
#xFFE4 RIGHT CONTROL Keyboard
#xFFE5 CAPS LOCK Keyboard
#xFFE6 SHIFT LOCK Keyboard
#xFFE7 LEFT META Keyboard
#xFFE8 RIGHT META Keyboard
#xFFE9 LEFT ALT Keyboard
#xFFEA RIGHT ALT Keyboard
#xFFEB LEFT SUPER Keyboard
#xFFEC RIGHT SUPER Keyboard
#xFFED LEFT HYPER Keyboard
#xFFEE RIGHT HYPER Keyboard
#xFFFF DELETE, RUBOUT Keyboard

The Keyboard (XKB) Extension set, which provides among other things a range of dead keys, is defined in "The X Keyboard
Extension: Protocol Specification", Appendix C.

The 3270 set defines additional keys that are specific to IBM 3270 terminals.

KEYSYM value Name Set
#xFD01 3270 DUPLICATE 3270
#xFD02 3270 FIELDMARK 3270
#xFD03 3270 RIGHT2 3270
#xFD04 3270 LEFT2 3270
#xFD05 3270 BACKTAB 3270
#xFD06 3270 ERASEEOF 3270
#xFD07 3270 ERASEINPUT 3270
#xFD08 3270 RESET 3270
#xFD09 3270 QUIT 3270
#xFD0A 3270 PA1 3270
#xFD0B 3270 PA2 3270
#xFD0C 3270 PA3 3270
#xFD0D 3270 TEST 3270
#xFD0E 3270 ATTN 3270

X Window System Protocol
79 / 159

KEYSYM value Name Set
#xFD0F 3270 CURSORBLINK 3270
#xFD10 3270 ALTCURSOR 3270
#xFD11 3270 KEYCLICK 3270
#xFD12 3270 JUMP 3270
#xFD13 3270 IDENT 3270
#xFD14 3270 RULE 3270
#xFD15 3270 COPY 3270
#xFD16 3270 PLAY 3270
#xFD17 3270 SETUP 3270
#xFD18 3270 RECORD 3270
#xFD19 3270 CHANGESCREEN 3270
#xFD1A 3270 DELETEWORD 3270
#xFD1B 3270 EXSELECT 3270
#xFD1C 3270 CURSORSELECT 3270
#xFD1D 3270 PRINTSCREEN 3270
#xFD1E 3270 ENTER 3270

A.5 Vendor KEYSYMs

The KEYSYM number range #x10000000 to #x1FFFFFFF is available for vendor-specific extentions. Among these, the range
#x11000000 to #x1100FFFF is designated for keypad KEYSYMs.

A.6 Legacy KEYSYMs

These date from the time before ISO 10646 / Unicode was available. They represent characters from a number of different older
8-bit coded character sets and have zero values for bytes 1 and 2. Byte 3 indicates a coded character set and byte 4 is the 8-bit
value of the particular character within that set.

Byte 3 Byte 4 Byte 3 Byte 4
1 Latin-2 11 APL
2 Latin-3 12 Hebrew
3 Latin-4 13 Thai
4 Kana 14 Korean
5 Arabic 15 Latin-5
6 Cyrillic 16 Latin-6
7 Greek 17 Latin-7
8 Technical 18 Latin-8
9 Special 19 Latin-9
10 Publishing 32 Currency

Each character set contains gaps where codes have been removed that were duplicates with codes in previous character sets (that
is, character sets with lesser byte 3 value).

The Latin, Arabic, Cyrillic, Greek, Hebrew, and Thai sets were taken from the early drafts of the relevant ISO 8859 parts
available at the time. However, in the case of the Cyrillic and Greek sets, these turned out differently in the final versions of
the ISO standard. The Technical, Special, and Publishing sets are based on Digital Equipment Corporation standards, as no
equivalent international standards were available at the time.

The table below lists all standardized Legacy KEYSYMs, along with the name used in the source document. Where there exists
an unambiguous equivalent in Unicode, as it is the case with all ISO 8859 characters, it is given in the second column as a cross
reference. Where there is no Unicode number provided, the exact semantics of the KEYSYM may have been lost and a Unicode
KEYSYM should be used instead, if available.

X Window System Protocol
80 / 159

As support of Unicode KEYSYMs increases, some or all of the Legacy KEYSYMs may be phased out and withdrawn in future
versions of this standard. Most KEYSYMs in the sets Technical, Special, Publishing, APL and Currency (with the exception of
#x20AC) were probably never used in practice, and were not supported by pre-Unicode fonts. In particular, the Currency set,
which was copied from Unicode, has already been deprecated by the introduction of the Unicode KEYSYMs.

KEYSYM
value

Unicode
value Name Set

#x01A1 U+0104 LATIN CAPITAL LETTER A WITH OGONEK Latin-2
#x01A2 U+02D8 BREVE Latin-2
#x01A3 U+0141 LATIN CAPITAL LETTER L WITH STROKE Latin-2
#x01A5 U+013D LATIN CAPITAL LETTER L WITH CARON Latin-2
#x01A6 U+015A LATIN CAPITAL LETTER S WITH ACUTE Latin-2
#x01A9 U+0160 LATIN CAPITAL LETTER S WITH CARON Latin-2
#x01AA U+015E LATIN CAPITAL LETTER S WITH CEDILLA Latin-2
#x01AB U+0164 LATIN CAPITAL LETTER T WITH CARON Latin-2
#x01AC U+0179 LATIN CAPITAL LETTER Z WITH ACUTE Latin-2
#x01AE U+017D LATIN CAPITAL LETTER Z WITH CARON Latin-2
#x01AF U+017B LATIN CAPITAL LETTER Z WITH DOT ABOVE Latin-2
#x01B1 U+0105 LATIN SMALL LETTER A WITH OGONEK Latin-2
#x01B2 U+02DB OGONEK Latin-2
#x01B3 U+0142 LATIN SMALL LETTER L WITH STROKE Latin-2
#x01B5 U+013E LATIN SMALL LETTER L WITH CARON Latin-2
#x01B6 U+015B LATIN SMALL LETTER S WITH ACUTE Latin-2
#x01B7 U+02C7 CARON Latin-2
#x01B9 U+0161 LATIN SMALL LETTER S WITH CARON Latin-2
#x01BA U+015F LATIN SMALL LETTER S WITH CEDILLA Latin-2
#x01BB U+0165 LATIN SMALL LETTER T WITH CARON Latin-2
#x01BC U+017A LATIN SMALL LETTER Z WITH ACUTE Latin-2
#x01BD U+02DD DOUBLE ACUTE ACCENT Latin-2
#x01BE U+017E LATIN SMALL LETTER Z WITH CARON Latin-2
#x01BF U+017C LATIN SMALL LETTER Z WITH DOT ABOVE Latin-2
#x01C0 U+0154 LATIN CAPITAL LETTER R WITH ACUTE Latin-2
#x01C3 U+0102 LATIN CAPITAL LETTER A WITH BREVE Latin-2
#x01C5 U+0139 LATIN CAPITAL LETTER L WITH ACUTE Latin-2
#x01C6 U+0106 LATIN CAPITAL LETTER C WITH ACUTE Latin-2
#x01C8 U+010C LATIN CAPITAL LETTER C WITH CARON Latin-2
#x01CA U+0118 LATIN CAPITAL LETTER E WITH OGONEK Latin-2
#x01CC U+011A LATIN CAPITAL LETTER E WITH CARON Latin-2
#x01CF U+010E LATIN CAPITAL LETTER D WITH CARON Latin-2
#x01D0 U+0110 LATIN CAPITAL LETTER D WITH STROKE Latin-2
#x01D1 U+0143 LATIN CAPITAL LETTER N WITH ACUTE Latin-2
#x01D2 U+0147 LATIN CAPITAL LETTER N WITH CARON Latin-2
#x01D5 U+0150 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE Latin-2
#x01D8 U+0158 LATIN CAPITAL LETTER R WITH CARON Latin-2
#x01D9 U+016E LATIN CAPITAL LETTER U WITH RING ABOVE Latin-2
#x01DB U+0170 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE Latin-2
#x01DE U+0162 LATIN CAPITAL LETTER T WITH CEDILLA Latin-2
#x01E0 U+0155 LATIN SMALL LETTER R WITH ACUTE Latin-2
#x01E3 U+0103 LATIN SMALL LETTER A WITH BREVE Latin-2
#x01E5 U+013A LATIN SMALL LETTER L WITH ACUTE Latin-2
#x01E6 U+0107 LATIN SMALL LETTER C WITH ACUTE Latin-2
#x01E8 U+010D LATIN SMALL LETTER C WITH CARON Latin-2
#x01EA U+0119 LATIN SMALL LETTER E WITH OGONEK Latin-2
#x01EC U+011B LATIN SMALL LETTER E WITH CARON Latin-2
#x01EF U+010F LATIN SMALL LETTER D WITH CARON Latin-2
#x01F0 U+0111 LATIN SMALL LETTER D WITH STROKE Latin-2
#x01F1 U+0144 LATIN SMALL LETTER N WITH ACUTE Latin-2

X Window System Protocol
81 / 159

KEYSYM
value

Unicode
value Name Set

#x01F2 U+0148 LATIN SMALL LETTER N WITH CARON Latin-2
#x01F5 U+0151 LATIN SMALL LETTER O WITH DOUBLE ACUTE Latin-2
#x01F8 U+0159 LATIN SMALL LETTER R WITH CARON Latin-2
#x01F9 U+016F LATIN SMALL LETTER U WITH RING ABOVE Latin-2
#x01FB U+0171 LATIN SMALL LETTER U WITH DOUBLE ACUTE Latin-2
#x01FE U+0163 LATIN SMALL LETTER T WITH CEDILLA Latin-2
#x01FF U+02D9 DOT ABOVE Latin-2
#x02A1 U+0126 LATIN CAPITAL LETTER H WITH STROKE Latin-3
#x02A6 U+0124 LATIN CAPITAL LETTER H WITH CIRCUMFLEX Latin-3
#x02A9 U+0130 LATIN CAPITAL LETTER I WITH DOT ABOVE Latin-3
#x02AB U+011E LATIN CAPITAL LETTER G WITH BREVE Latin-3
#x02AC U+0134 LATIN CAPITAL LETTER J WITH CIRCUMFLEX Latin-3
#x02B1 U+0127 LATIN SMALL LETTER H WITH STROKE Latin-3
#x02B6 U+0125 LATIN SMALL LETTER H WITH CIRCUMFLEX Latin-3
#x02B9 U+0131 LATIN SMALL LETTER DOTLESS I Latin-3
#x02BB U+011F LATIN SMALL LETTER G WITH BREVE Latin-3
#x02BC U+0135 LATIN SMALL LETTER J WITH CIRCUMFLEX Latin-3
#x02C5 U+010A LATIN CAPITAL LETTER C WITH DOT ABOVE Latin-3
#x02C6 U+0108 LATIN CAPITAL LETTER C WITH CIRCUMFLEX Latin-3
#x02D5 U+0120 LATIN CAPITAL LETTER G WITH DOT ABOVE Latin-3
#x02D8 U+011C LATIN CAPITAL LETTER G WITH CIRCUMFLEX Latin-3
#x02DD U+016C LATIN CAPITAL LETTER U WITH BREVE Latin-3
#x02DE U+015C LATIN CAPITAL LETTER S WITH CIRCUMFLEX Latin-3
#x02E5 U+010B LATIN SMALL LETTER C WITH DOT ABOVE Latin-3
#x02E6 U+0109 LATIN SMALL LETTER C WITH CIRCUMFLEX Latin-3
#x02F5 U+0121 LATIN SMALL LETTER G WITH DOT ABOVE Latin-3
#x02F8 U+011D LATIN SMALL LETTER G WITH CIRCUMFLEX Latin-3
#x02FD U+016D LATIN SMALL LETTER U WITH BREVE Latin-3
#x02FE U+015D LATIN SMALL LETTER S WITH CIRCUMFLEX Latin-3
#x03A2 U+0138 LATIN SMALL LETTER KRA Latin-4
#x03A3 U+0156 LATIN CAPITAL LETTER R WITH CEDILLA Latin-4
#x03A5 U+0128 LATIN CAPITAL LETTER I WITH TILDE Latin-4
#x03A6 U+013B LATIN CAPITAL LETTER L WITH CEDILLA Latin-4
#x03AA U+0112 LATIN CAPITAL LETTER E WITH MACRON Latin-4
#x03AB U+0122 LATIN CAPITAL LETTER G WITH CEDILLA Latin-4
#x03AC U+0166 LATIN CAPITAL LETTER T WITH STROKE Latin-4
#x03B3 U+0157 LATIN SMALL LETTER R WITH CEDILLA Latin-4
#x03B5 U+0129 LATIN SMALL LETTER I WITH TILDE Latin-4
#x03B6 U+013C LATIN SMALL LETTER L WITH CEDILLA Latin-4
#x03BA U+0113 LATIN SMALL LETTER E WITH MACRON Latin-4
#x03BB U+0123 LATIN SMALL LETTER G WITH CEDILLA Latin-4
#x03BC U+0167 LATIN SMALL LETTER T WITH STROKE Latin-4
#x03BD U+014A LATIN CAPITAL LETTER ENG Latin-4
#x03BF U+014B LATIN SMALL LETTER ENG Latin-4
#x03C0 U+0100 LATIN CAPITAL LETTER A WITH MACRON Latin-4
#x03C7 U+012E LATIN CAPITAL LETTER I WITH OGONEK Latin-4
#x03CC U+0116 LATIN CAPITAL LETTER E WITH DOT ABOVE Latin-4
#x03CF U+012A LATIN CAPITAL LETTER I WITH MACRON Latin-4
#x03D1 U+0145 LATIN CAPITAL LETTER N WITH CEDILLA Latin-4
#x03D2 U+014C LATIN CAPITAL LETTER O WITH MACRON Latin-4
#x03D3 U+0136 LATIN CAPITAL LETTER K WITH CEDILLA Latin-4
#x03D9 U+0172 LATIN CAPITAL LETTER U WITH OGONEK Latin-4
#x03DD U+0168 LATIN CAPITAL LETTER U WITH TILDE Latin-4
#x03DE U+016A LATIN CAPITAL LETTER U WITH MACRON Latin-4

X Window System Protocol
82 / 159

KEYSYM
value

Unicode
value Name Set

#x03E0 U+0101 LATIN SMALL LETTER A WITH MACRON Latin-4
#x03E7 U+012F LATIN SMALL LETTER I WITH OGONEK Latin-4
#x03EC U+0117 LATIN SMALL LETTER E WITH DOT ABOVE Latin-4
#x03EF U+012B LATIN SMALL LETTER I WITH MACRON Latin-4
#x03F1 U+0146 LATIN SMALL LETTER N WITH CEDILLA Latin-4
#x03F2 U+014D LATIN SMALL LETTER O WITH MACRON Latin-4
#x03F3 U+0137 LATIN SMALL LETTER K WITH CEDILLA Latin-4
#x03F9 U+0173 LATIN SMALL LETTER U WITH OGONEK Latin-4
#x03FD U+0169 LATIN SMALL LETTER U WITH TILDE Latin-4
#x03FE U+016B LATIN SMALL LETTER U WITH MACRON Latin-4
#x047E U+203E OVERLINE Kana
#x04A1 U+3002 KANA FULL STOP Kana
#x04A2 U+300C KANA OPENING BRACKET Kana
#x04A3 U+300D KANA CLOSING BRACKET Kana
#x04A4 U+3001 KANA COMMA Kana
#x04A5 U+30FB KANA CONJUNCTIVE Kana
#x04A6 U+30F2 KANA LETTER WO Kana
#x04A7 U+30A1 KANA LETTER SMALL A Kana
#x04A8 U+30A3 KANA LETTER SMALL I Kana
#x04A9 U+30A5 KANA LETTER SMALL U Kana
#x04AA U+30A7 KANA LETTER SMALL E Kana
#x04AB U+30A9 KANA LETTER SMALL O Kana
#x04AC U+30E3 KANA LETTER SMALL YA Kana
#x04AD U+30E5 KANA LETTER SMALL YU Kana
#x04AE U+30E7 KANA LETTER SMALL YO Kana
#x04AF U+30C3 KANA LETTER SMALL TSU Kana
#x04B0 U+30FC PROLONGED SOUND SYMBOL Kana
#x04B1 U+30A2 KANA LETTER A Kana
#x04B2 U+30A4 KANA LETTER I Kana
#x04B3 U+30A6 KANA LETTER U Kana
#x04B4 U+30A8 KANA LETTER E Kana
#x04B5 U+30AA KANA LETTER O Kana
#x04B6 U+30AB KANA LETTER KA Kana
#x04B7 U+30AD KANA LETTER KI Kana
#x04B8 U+30AF KANA LETTER KU Kana
#x04B9 U+30B1 KANA LETTER KE Kana
#x04BA U+30B3 KANA LETTER KO Kana
#x04BB U+30B5 KANA LETTER SA Kana
#x04BC U+30B7 KANA LETTER SHI Kana
#x04BD U+30B9 KANA LETTER SU Kana
#x04BE U+30BB KANA LETTER SE Kana
#x04BF U+30BD KANA LETTER SO Kana
#x04C0 U+30BF KANA LETTER TA Kana
#x04C1 U+30C1 KANA LETTER CHI Kana
#x04C2 U+30C4 KANA LETTER TSU Kana
#x04C3 U+30C6 KANA LETTER TE Kana
#x04C4 U+30C8 KANA LETTER TO Kana
#x04C5 U+30CA KANA LETTER NA Kana
#x04C6 U+30CB KANA LETTER NI Kana
#x04C7 U+30CC KANA LETTER NU Kana
#x04C8 U+30CD KANA LETTER NE Kana
#x04C9 U+30CE KANA LETTER NO Kana
#x04CA U+30CF KANA LETTER HA Kana
#x04CB U+30D2 KANA LETTER HI Kana

X Window System Protocol
83 / 159

KEYSYM
value

Unicode
value Name Set

#x04CC U+30D5 KANA LETTER FU Kana
#x04CD U+30D8 KANA LETTER HE Kana
#x04CE U+30DB KANA LETTER HO Kana
#x04CF U+30DE KANA LETTER MA Kana
#x04D0 U+30DF KANA LETTER MI Kana
#x04D1 U+30E0 KANA LETTER MU Kana
#x04D2 U+30E1 KANA LETTER ME Kana
#x04D3 U+30E2 KANA LETTER MO Kana
#x04D4 U+30E4 KANA LETTER YA Kana
#x04D5 U+30E6 KANA LETTER YU Kana
#x04D6 U+30E8 KANA LETTER YO Kana
#x04D7 U+30E9 KANA LETTER RA Kana
#x04D8 U+30EA KANA LETTER RI Kana
#x04D9 U+30EB KANA LETTER RU Kana
#x04DA U+30EC KANA LETTER RE Kana
#x04DB U+30ED KANA LETTER RO Kana
#x04DC U+30EF KANA LETTER WA Kana
#x04DD U+30F3 KANA LETTER N Kana
#x04DE U+309B VOICED SOUND SYMBOL Kana
#x04DF U+309C SEMIVOICED SOUND SYMBOL Kana
#x05AC U+060C ARABIC COMMA Arabic
#x05BB U+061B ARABIC SEMICOLON Arabic
#x05BF U+061F ARABIC QUESTION MARK Arabic
#x05C1 U+0621 ARABIC LETTER HAMZA Arabic
#x05C2 U+0622 ARABIC LETTER ALEF WITH MADDA ABOVE Arabic
#x05C3 U+0623 ARABIC LETTER ALEF WITH HAMZA ABOVE Arabic
#x05C4 U+0624 ARABIC LETTER WAW WITH HAMZA ABOVE Arabic
#x05C5 U+0625 ARABIC LETTER ALEF WITH HAMZA BELOW Arabic
#x05C6 U+0626 ARABIC LETTER YEH WITH HAMZA ABOVE Arabic
#x05C7 U+0627 ARABIC LETTER ALEF Arabic
#x05C8 U+0628 ARABIC LETTER BEH Arabic
#x05C9 U+0629 ARABIC LETTER TEH MARBUTA Arabic
#x05CA U+062A ARABIC LETTER TEH Arabic
#x05CB U+062B ARABIC LETTER THEH Arabic
#x05CC U+062C ARABIC LETTER JEEM Arabic
#x05CD U+062D ARABIC LETTER HAH Arabic
#x05CE U+062E ARABIC LETTER KHAH Arabic
#x05CF U+062F ARABIC LETTER DAL Arabic
#x05D0 U+0630 ARABIC LETTER THAL Arabic
#x05D1 U+0631 ARABIC LETTER REH Arabic
#x05D2 U+0632 ARABIC LETTER ZAIN Arabic
#x05D3 U+0633 ARABIC LETTER SEEN Arabic
#x05D4 U+0634 ARABIC LETTER SHEEN Arabic
#x05D5 U+0635 ARABIC LETTER SAD Arabic
#x05D6 U+0636 ARABIC LETTER DAD Arabic
#x05D7 U+0637 ARABIC LETTER TAH Arabic
#x05D8 U+0638 ARABIC LETTER ZAH Arabic
#x05D9 U+0639 ARABIC LETTER AIN Arabic
#x05DA U+063A ARABIC LETTER GHAIN Arabic
#x05E0 U+0640 ARABIC TATWEEL Arabic
#x05E1 U+0641 ARABIC LETTER FEH Arabic
#x05E2 U+0642 ARABIC LETTER QAF Arabic
#x05E3 U+0643 ARABIC LETTER KAF Arabic
#x05E4 U+0644 ARABIC LETTER LAM Arabic

X Window System Protocol
84 / 159

KEYSYM
value

Unicode
value Name Set

#x05E5 U+0645 ARABIC LETTER MEEM Arabic
#x05E6 U+0646 ARABIC LETTER NOON Arabic
#x05E7 U+0647 ARABIC LETTER HEH Arabic
#x05E8 U+0648 ARABIC LETTER WAW Arabic
#x05E9 U+0649 ARABIC LETTER ALEF MAKSURA Arabic
#x05EA U+064A ARABIC LETTER YEH Arabic
#x05EB U+064B ARABIC FATHATAN Arabic
#x05EC U+064C ARABIC DAMMATAN Arabic
#x05ED U+064D ARABIC KASRATAN Arabic
#x05EE U+064E ARABIC FATHA Arabic
#x05EF U+064F ARABIC DAMMA Arabic
#x05F0 U+0650 ARABIC KASRA Arabic
#x05F1 U+0651 ARABIC SHADDA Arabic
#x05F2 U+0652 ARABIC SUKUN Arabic
#x06A1 U+0452 CYRILLIC SMALL LETTER DJE Cyrillic
#x06A2 U+0453 CYRILLIC SMALL LETTER GJE Cyrillic
#x06A3 U+0451 CYRILLIC SMALL LETTER IO Cyrillic
#x06A4 U+0454 CYRILLIC SMALL LETTER UKRAINIAN IE Cyrillic
#x06A5 U+0455 CYRILLIC SMALL LETTER DZE Cyrillic
#x06A6 U+0456 CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I Cyrillic
#x06A7 U+0457 CYRILLIC SMALL LETTER YI Cyrillic
#x06A8 U+0458 CYRILLIC SMALL LETTER JE Cyrillic
#x06A9 U+0459 CYRILLIC SMALL LETTER LJE Cyrillic
#x06AA U+045A CYRILLIC SMALL LETTER NJE Cyrillic
#x06AB U+045B CYRILLIC SMALL LETTER TSHE Cyrillic
#x06AC U+045C CYRILLIC SMALL LETTER KJE Cyrillic
#x06AD U+0491 CYRILLIC SMALL LETTER GHE WITH UPTURN Cyrillic
#x06AE U+045E CYRILLIC SMALL LETTER SHORT U Cyrillic
#x06AF U+045F CYRILLIC SMALL LETTER DZHE Cyrillic
#x06B0 U+2116 NUMERO SIGN Cyrillic
#x06B1 U+0402 CYRILLIC CAPITAL LETTER DJE Cyrillic
#x06B2 U+0403 CYRILLIC CAPITAL LETTER GJE Cyrillic
#x06B3 U+0401 CYRILLIC CAPITAL LETTER IO Cyrillic
#x06B4 U+0404 CYRILLIC CAPITAL LETTER UKRAINIAN IE Cyrillic
#x06B5 U+0405 CYRILLIC CAPITAL LETTER DZE Cyrillic
#x06B6 U+0406 CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I Cyrillic
#x06B7 U+0407 CYRILLIC CAPITAL LETTER YI Cyrillic
#x06B8 U+0408 CYRILLIC CAPITAL LETTER JE Cyrillic
#x06B9 U+0409 CYRILLIC CAPITAL LETTER LJE Cyrillic
#x06BA U+040A CYRILLIC CAPITAL LETTER NJE Cyrillic
#x06BB U+040B CYRILLIC CAPITAL LETTER TSHE Cyrillic
#x06BC U+040C CYRILLIC CAPITAL LETTER KJE Cyrillic
#x06BD U+0490 CYRILLIC CAPITAL LETTER GHE WITH UPTURN Cyrillic
#x06BE U+040E CYRILLIC CAPITAL LETTER SHORT U Cyrillic
#x06BF U+040F CYRILLIC CAPITAL LETTER DZHE Cyrillic
#x06C0 U+044E CYRILLIC SMALL LETTER YU Cyrillic
#x06C1 U+0430 CYRILLIC SMALL LETTER A Cyrillic
#x06C2 U+0431 CYRILLIC SMALL LETTER BE Cyrillic
#x06C3 U+0446 CYRILLIC SMALL LETTER TSE Cyrillic
#x06C4 U+0434 CYRILLIC SMALL LETTER DE Cyrillic
#x06C5 U+0435 CYRILLIC SMALL LETTER IE Cyrillic
#x06C6 U+0444 CYRILLIC SMALL LETTER EF Cyrillic
#x06C7 U+0433 CYRILLIC SMALL LETTER GHE Cyrillic
#x06C8 U+0445 CYRILLIC SMALL LETTER HA Cyrillic

X Window System Protocol
85 / 159

KEYSYM
value

Unicode
value Name Set

#x06C9 U+0438 CYRILLIC SMALL LETTER I Cyrillic
#x06CA U+0439 CYRILLIC SMALL LETTER SHORT I Cyrillic
#x06CB U+043A CYRILLIC SMALL LETTER KA Cyrillic
#x06CC U+043B CYRILLIC SMALL LETTER EL Cyrillic
#x06CD U+043C CYRILLIC SMALL LETTER EM Cyrillic
#x06CE U+043D CYRILLIC SMALL LETTER EN Cyrillic
#x06CF U+043E CYRILLIC SMALL LETTER O Cyrillic
#x06D0 U+043F CYRILLIC SMALL LETTER PE Cyrillic
#x06D1 U+044F CYRILLIC SMALL LETTER YA Cyrillic
#x06D2 U+0440 CYRILLIC SMALL LETTER ER Cyrillic
#x06D3 U+0441 CYRILLIC SMALL LETTER ES Cyrillic
#x06D4 U+0442 CYRILLIC SMALL LETTER TE Cyrillic
#x06D5 U+0443 CYRILLIC SMALL LETTER U Cyrillic
#x06D6 U+0436 CYRILLIC SMALL LETTER ZHE Cyrillic
#x06D7 U+0432 CYRILLIC SMALL LETTER VE Cyrillic
#x06D8 U+044C CYRILLIC SMALL LETTER SOFT SIGN Cyrillic
#x06D9 U+044B CYRILLIC SMALL LETTER YERU Cyrillic
#x06DA U+0437 CYRILLIC SMALL LETTER ZE Cyrillic
#x06DB U+0448 CYRILLIC SMALL LETTER SHA Cyrillic
#x06DC U+044D CYRILLIC SMALL LETTER E Cyrillic
#x06DD U+0449 CYRILLIC SMALL LETTER SHCHA Cyrillic
#x06DE U+0447 CYRILLIC SMALL LETTER CHE Cyrillic
#x06DF U+044A CYRILLIC SMALL LETTER HARD SIGN Cyrillic
#x06E0 U+042E CYRILLIC CAPITAL LETTER YU Cyrillic
#x06E1 U+0410 CYRILLIC CAPITAL LETTER A Cyrillic
#x06E2 U+0411 CYRILLIC CAPITAL LETTER BE Cyrillic
#x06E3 U+0426 CYRILLIC CAPITAL LETTER TSE Cyrillic
#x06E4 U+0414 CYRILLIC CAPITAL LETTER DE Cyrillic
#x06E5 U+0415 CYRILLIC CAPITAL LETTER IE Cyrillic
#x06E6 U+0424 CYRILLIC CAPITAL LETTER EF Cyrillic
#x06E7 U+0413 CYRILLIC CAPITAL LETTER GHE Cyrillic
#x06E8 U+0425 CYRILLIC CAPITAL LETTER HA Cyrillic
#x06E9 U+0418 CYRILLIC CAPITAL LETTER I Cyrillic
#x06EA U+0419 CYRILLIC CAPITAL LETTER SHORT I Cyrillic
#x06EB U+041A CYRILLIC CAPITAL LETTER KA Cyrillic
#x06EC U+041B CYRILLIC CAPITAL LETTER EL Cyrillic
#x06ED U+041C CYRILLIC CAPITAL LETTER EM Cyrillic
#x06EE U+041D CYRILLIC CAPITAL LETTER EN Cyrillic
#x06EF U+041E CYRILLIC CAPITAL LETTER O Cyrillic
#x06F0 U+041F CYRILLIC CAPITAL LETTER PE Cyrillic
#x06F1 U+042F CYRILLIC CAPITAL LETTER YA Cyrillic
#x06F2 U+0420 CYRILLIC CAPITAL LETTER ER Cyrillic
#x06F3 U+0421 CYRILLIC CAPITAL LETTER ES Cyrillic
#x06F4 U+0422 CYRILLIC CAPITAL LETTER TE Cyrillic
#x06F5 U+0423 CYRILLIC CAPITAL LETTER U Cyrillic
#x06F6 U+0416 CYRILLIC CAPITAL LETTER ZHE Cyrillic
#x06F7 U+0412 CYRILLIC CAPITAL LETTER VE Cyrillic
#x06F8 U+042C CYRILLIC CAPITAL LETTER SOFT SIGN Cyrillic
#x06F9 U+042B CYRILLIC CAPITAL LETTER YERU Cyrillic
#x06FA U+0417 CYRILLIC CAPITAL LETTER ZE Cyrillic
#x06FB U+0428 CYRILLIC CAPITAL LETTER SHA Cyrillic
#x06FC U+042D CYRILLIC CAPITAL LETTER E Cyrillic
#x06FD U+0429 CYRILLIC CAPITAL LETTER SHCHA Cyrillic
#x06FE U+0427 CYRILLIC CAPITAL LETTER CHE Cyrillic

X Window System Protocol
86 / 159

KEYSYM
value

Unicode
value Name Set

#x06FF U+042A CYRILLIC CAPITAL LETTER HARD SIGN Cyrillic
#x07A1 U+0386 GREEK CAPITAL LETTER ALPHA WITH TONOS Greek
#x07A2 U+0388 GREEK CAPITAL LETTER EPSILON WITH TONOS Greek
#x07A3 U+0389 GREEK CAPITAL LETTER ETA WITH TONOS Greek
#x07A4 U+038A GREEK CAPITAL LETTER IOTA WITH TONOS Greek
#x07A5 U+03AA GREEK CAPITAL LETTER IOTA WITH DIALYTIKA Greek
#x07A7 U+038C GREEK CAPITAL LETTER OMICRON WITH TONOS Greek
#x07A8 U+038E GREEK CAPITAL LETTER UPSILON WITH TONOS Greek
#x07A9 U+03AB GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA Greek
#x07AB U+038F GREEK CAPITAL LETTER OMEGA WITH TONOS Greek
#x07AE U+0385 GREEK DIALYTIKA TONOS Greek
#x07AF U+2015 HORIZONTAL BAR Greek
#x07B1 U+03AC GREEK SMALL LETTER ALPHA WITH TONOS Greek
#x07B2 U+03AD GREEK SMALL LETTER EPSILON WITH TONOS Greek
#x07B3 U+03AE GREEK SMALL LETTER ETA WITH TONOS Greek
#x07B4 U+03AF GREEK SMALL LETTER IOTA WITH TONOS Greek
#x07B5 U+03CA GREEK SMALL LETTER IOTA WITH DIALYTIKA Greek
#x07B6 U+0390 GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS Greek
#x07B7 U+03CC GREEK SMALL LETTER OMICRON WITH TONOS Greek
#x07B8 U+03CD GREEK SMALL LETTER UPSILON WITH TONOS Greek
#x07B9 U+03CB GREEK SMALL LETTER UPSILON WITH DIALYTIKA Greek

#x07BA U+03B0 GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND
TONOS Greek

#x07BB U+03CE GREEK SMALL LETTER OMEGA WITH TONOS Greek
#x07C1 U+0391 GREEK CAPITAL LETTER ALPHA Greek
#x07C2 U+0392 GREEK CAPITAL LETTER BETA Greek
#x07C3 U+0393 GREEK CAPITAL LETTER GAMMA Greek
#x07C4 U+0394 GREEK CAPITAL LETTER DELTA Greek
#x07C5 U+0395 GREEK CAPITAL LETTER EPSILON Greek
#x07C6 U+0396 GREEK CAPITAL LETTER ZETA Greek
#x07C7 U+0397 GREEK CAPITAL LETTER ETA Greek
#x07C8 U+0398 GREEK CAPITAL LETTER THETA Greek
#x07C9 U+0399 GREEK CAPITAL LETTER IOTA Greek
#x07CA U+039A GREEK CAPITAL LETTER KAPPA Greek
#x07CB U+039B GREEK CAPITAL LETTER LAMDA Greek
#x07CC U+039C GREEK CAPITAL LETTER MU Greek
#x07CD U+039D GREEK CAPITAL LETTER NU Greek
#x07CE U+039E GREEK CAPITAL LETTER XI Greek
#x07CF U+039F GREEK CAPITAL LETTER OMICRON Greek
#x07D0 U+03A0 GREEK CAPITAL LETTER PI Greek
#x07D1 U+03A1 GREEK CAPITAL LETTER RHO Greek
#x07D2 U+03A3 GREEK CAPITAL LETTER SIGMA Greek
#x07D4 U+03A4 GREEK CAPITAL LETTER TAU Greek
#x07D5 U+03A5 GREEK CAPITAL LETTER UPSILON Greek
#x07D6 U+03A6 GREEK CAPITAL LETTER PHI Greek
#x07D7 U+03A7 GREEK CAPITAL LETTER CHI Greek
#x07D8 U+03A8 GREEK CAPITAL LETTER PSI Greek
#x07D9 U+03A9 GREEK CAPITAL LETTER OMEGA Greek
#x07E1 U+03B1 GREEK SMALL LETTER ALPHA Greek
#x07E2 U+03B2 GREEK SMALL LETTER BETA Greek
#x07E3 U+03B3 GREEK SMALL LETTER GAMMA Greek
#x07E4 U+03B4 GREEK SMALL LETTER DELTA Greek
#x07E5 U+03B5 GREEK SMALL LETTER EPSILON Greek
#x07E6 U+03B6 GREEK SMALL LETTER ZETA Greek

X Window System Protocol
87 / 159

KEYSYM
value

Unicode
value Name Set

#x07E7 U+03B7 GREEK SMALL LETTER ETA Greek
#x07E8 U+03B8 GREEK SMALL LETTER THETA Greek
#x07E9 U+03B9 GREEK SMALL LETTER IOTA Greek
#x07EA U+03BA GREEK SMALL LETTER KAPPA Greek
#x07EB U+03BB GREEK SMALL LETTER LAMDA Greek
#x07EC U+03BC GREEK SMALL LETTER MU Greek
#x07ED U+03BD GREEK SMALL LETTER NU Greek
#x07EE U+03BE GREEK SMALL LETTER XI Greek
#x07EF U+03BF GREEK SMALL LETTER OMICRON Greek
#x07F0 U+03C0 GREEK SMALL LETTER PI Greek
#x07F1 U+03C1 GREEK SMALL LETTER RHO Greek
#x07F2 U+03C3 GREEK SMALL LETTER SIGMA Greek
#x07F3 U+03C2 GREEK SMALL LETTER FINAL SIGMA Greek
#x07F4 U+03C4 GREEK SMALL LETTER TAU Greek
#x07F5 U+03C5 GREEK SMALL LETTER UPSILON Greek
#x07F6 U+03C6 GREEK SMALL LETTER PHI Greek
#x07F7 U+03C7 GREEK SMALL LETTER CHI Greek
#x07F8 U+03C8 GREEK SMALL LETTER PSI Greek
#x07F9 U+03C9 GREEK SMALL LETTER OMEGA Greek
#x08A1 U+23B7 LEFT RADICAL Technical
#x08A2 - TOP LEFT RADICAL Technical
#x08A3 - HORIZONTAL CONNECTOR Technical
#x08A4 U+2320 TOP INTEGRAL Technical
#x08A5 U+2321 BOTTOM INTEGRAL Technical
#x08A6 - VERTICAL CONNECTOR Technical
#x08A7 U+23A1 TOP LEFT SQUARE BRACKET Technical
#x08A8 U+23A3 BOTTOM LEFT SQUARE BRACKET Technical
#x08A9 U+23A4 TOP RIGHT SQUARE BRACKET Technical
#x08AA U+23A6 BOTTOM RIGHT SQUARE BRACKET Technical
#x08AB U+239B TOP LEFT PARENTHESIS Technical
#x08AC U+239D BOTTOM LEFT PARENTHESIS Technical
#x08AD U+239E TOP RIGHT PARENTHESIS Technical
#x08AE U+23A0 BOTTOM RIGHT PARENTHESIS Technical
#x08AF U+23A8 LEFT MIDDLE CURLY BRACE Technical
#x08B0 U+23AC RIGHT MIDDLE CURLY BRACE Technical
#x08B1 - TOP LEFT SUMMATION Technical
#x08B2 - BOTTOM LEFT SUMMATION Technical
#x08B3 - TOP VERTICAL SUMMATION CONNECTOR Technical
#x08B4 - BOTTOM VERTICAL SUMMATION CONNECTOR Technical
#x08B5 - TOP RIGHT SUMMATION Technical
#x08B6 - BOTTOM RIGHT SUMMATION Technical
#x08B7 - RIGHT MIDDLE SUMMATION Technical
#x08BC U+2264 LESS THAN OR EQUAL SIGN Technical
#x08BD U+2260 NOT EQUAL SIGN Technical
#x08BE U+2265 GREATER THAN OR EQUAL SIGN Technical
#x08BF U+222B INTEGRAL Technical
#x08C0 U+2234 THEREFORE Technical
#x08C1 U+221D VARIATION, PROPORTIONAL TO Technical
#x08C2 U+221E INFINITY Technical
#x08C5 U+2207 NABLA, DEL Technical
#x08C8 U+223C IS APPROXIMATE TO Technical
#x08C9 U+2243 SIMILAR OR EQUAL TO Technical
#x08CD U+21D4 IF AND ONLY IF Technical
#x08CE U+21D2 IMPLIES Technical

X Window System Protocol
88 / 159

KEYSYM
value

Unicode
value Name Set

#x08CF U+2261 IDENTICAL TO Technical
#x08D6 U+221A RADICAL Technical
#x08DA U+2282 IS INCLUDED IN Technical
#x08DB U+2283 INCLUDES Technical
#x08DC U+2229 INTERSECTION Technical
#x08DD U+222A UNION Technical
#x08DE U+2227 LOGICAL AND Technical
#x08DF U+2228 LOGICAL OR Technical
#x08EF U+2202 PARTIAL DERIVATIVE Technical
#x08F6 U+0192 FUNCTION Technical
#x08FB U+2190 LEFT ARROW Technical
#x08FC U+2191 UPWARD ARROW Technical
#x08FD U+2192 RIGHT ARROW Technical
#x08FE U+2193 DOWNWARD ARROW Technical
#x09DF - BLANK Special
#x09E0 U+25C6 SOLID DIAMOND Special
#x09E1 U+2592 CHECKERBOARD Special
#x09E2 U+2409 "HT" Special
#x09E3 U+240C "FF" Special
#x09E4 U+240D "CR" Special
#x09E5 U+240A "LF" Special
#x09E8 U+2424 "NL" Special
#x09E9 U+240B "VT" Special
#x09EA U+2518 LOWER-RIGHT CORNER Special
#x09EB U+2510 UPPER-RIGHT CORNER Special
#x09EC U+250C UPPER-LEFT CORNER Special
#x09ED U+2514 LOWER-LEFT CORNER Special
#x09EE U+253C CROSSING-LINES Special
#x09EF U+23BA HORIZONTAL LINE, SCAN 1 Special
#x09F0 U+23BB HORIZONTAL LINE, SCAN 3 Special
#x09F1 U+2500 HORIZONTAL LINE, SCAN 5 Special
#x09F2 U+23BC HORIZONTAL LINE, SCAN 7 Special
#x09F3 U+23BD HORIZONTAL LINE, SCAN 9 Special
#x09F4 U+251C LEFT "T" Special
#x09F5 U+2524 RIGHT "T" Special
#x09F6 U+2534 BOTTOM "T" Special
#x09F7 U+252C TOP "T" Special
#x09F8 U+2502 VERTICAL BAR Special
#x0AA1 U+2003 EM SPACE Publish
#x0AA2 U+2002 EN SPACE Publish
#x0AA3 U+2004 3/EM SPACE Publish
#x0AA4 U+2005 4/EM SPACE Publish
#x0AA5 U+2007 DIGIT SPACE Publish
#x0AA6 U+2008 PUNCTUATION SPACE Publish
#x0AA7 U+2009 THIN SPACE Publish
#x0AA8 U+200A HAIR SPACE Publish
#x0AA9 U+2014 EM DASH Publish
#x0AAA U+2013 EN DASH Publish
#x0AAC - SIGNIFICANT BLANK SYMBOL Publish
#x0AAE U+2026 ELLIPSIS Publish
#x0AAF U+2025 DOUBLE BASELINE DOT Publish
#x0AB0 U+2153 VULGAR FRACTION ONE THIRD Publish
#x0AB1 U+2154 VULGAR FRACTION TWO THIRDS Publish
#x0AB2 U+2155 VULGAR FRACTION ONE FIFTH Publish

X Window System Protocol
89 / 159

KEYSYM
value

Unicode
value Name Set

#x0AB3 U+2156 VULGAR FRACTION TWO FIFTHS Publish
#x0AB4 U+2157 VULGAR FRACTION THREE FIFTHS Publish
#x0AB5 U+2158 VULGAR FRACTION FOUR FIFTHS Publish
#x0AB6 U+2159 VULGAR FRACTION ONE SIXTH Publish
#x0AB7 U+215A VULGAR FRACTION FIVE SIXTHS Publish
#x0AB8 U+2105 CARE OF Publish
#x0ABB U+2012 FIGURE DASH Publish
#x0ABC - LEFT ANGLE BRACKET Publish
#x0ABD - DECIMAL POINT Publish
#x0ABE - RIGHT ANGLE BRACKET Publish
#x0ABF - MARKER Publish
#x0AC3 U+215B VULGAR FRACTION ONE EIGHTH Publish
#x0AC4 U+215C VULGAR FRACTION THREE EIGHTHS Publish
#x0AC5 U+215D VULGAR FRACTION FIVE EIGHTHS Publish
#x0AC6 U+215E VULGAR FRACTION SEVEN EIGHTHS Publish
#x0AC9 U+2122 TRADEMARK SIGN Publish
#x0ACA - SIGNATURE MARK Publish
#x0ACB - TRADEMARK SIGN IN CIRCLE Publish
#x0ACC - LEFT OPEN TRIANGLE Publish
#x0ACD - RIGHT OPEN TRIANGLE Publish
#x0ACE - EM OPEN CIRCLE Publish
#x0ACF - EM OPEN RECTANGLE Publish
#x0AD0 U+2018 LEFT SINGLE QUOTATION MARK Publish
#x0AD1 U+2019 RIGHT SINGLE QUOTATION MARK Publish
#x0AD2 U+201C LEFT DOUBLE QUOTATION MARK Publish
#x0AD3 U+201D RIGHT DOUBLE QUOTATION MARK Publish
#x0AD4 U+211E PRESCRIPTION, TAKE, RECIPE Publish
#x0AD6 U+2032 MINUTES Publish
#x0AD7 U+2033 SECONDS Publish
#x0AD9 U+271D LATIN CROSS Publish
#x0ADA - HEXAGRAM Publish
#x0ADB - FILLED RECTANGLE BULLET Publish
#x0ADC - FILLED LEFT TRIANGLE BULLET Publish
#x0ADD - FILLED RIGHT TRIANGLE BULLET Publish
#x0ADE - EM FILLED CIRCLE Publish
#x0ADF - EM FILLED RECTANGLE Publish
#x0AE0 - EN OPEN CIRCLE BULLET Publish
#x0AE1 - EN OPEN SQUARE BULLET Publish
#x0AE2 - OPEN RECTANGULAR BULLET Publish
#x0AE3 - OPEN TRIANGULAR BULLET UP Publish
#x0AE4 - OPEN TRIANGULAR BULLET DOWN Publish
#x0AE5 - OPEN STAR Publish
#x0AE6 - EN FILLED CIRCLE BULLET Publish
#x0AE7 - EN FILLED SQUARE BULLET Publish
#x0AE8 - FILLED TRIANGULAR BULLET UP Publish
#x0AE9 - FILLED TRIANGULAR BULLET DOWN Publish
#x0AEA - LEFT POINTER Publish
#x0AEB - RIGHT POINTER Publish
#x0AEC U+2663 CLUB Publish
#x0AED U+2666 DIAMOND Publish
#x0AEE U+2665 HEART Publish
#x0AF0 U+2720 MALTESE CROSS Publish
#x0AF1 U+2020 DAGGER Publish
#x0AF2 U+2021 DOUBLE DAGGER Publish

X Window System Protocol
90 / 159

KEYSYM
value

Unicode
value Name Set

#x0AF3 U+2713 CHECK MARK, TICK Publish
#x0AF4 U+2717 BALLOT CROSS Publish
#x0AF5 U+266F MUSICAL SHARP Publish
#x0AF6 U+266D MUSICAL FLAT Publish
#x0AF7 U+2642 MALE SYMBOL Publish
#x0AF8 U+2640 FEMALE SYMBOL Publish
#x0AF9 U+260E TELEPHONE SYMBOL Publish
#x0AFA U+2315 TELEPHONE RECORDER SYMBOL Publish
#x0AFB U+2117 PHONOGRAPH COPYRIGHT SIGN Publish
#x0AFC U+2038 CARET Publish
#x0AFD U+201A SINGLE LOW QUOTATION MARK Publish
#x0AFE U+201E DOUBLE LOW QUOTATION MARK Publish
#x0AFF - CURSOR Publish
#x0BA3 - LEFT CARET APL
#x0BA6 - RIGHT CARET APL
#x0BA8 - DOWN CARET APL
#x0BA9 - UP CARET APL
#x0BC0 - OVERBAR APL
#x0BC2 U+22A5 DOWN TACK APL
#x0BC3 - UP SHOE (CAP) APL
#x0BC4 U+230A DOWN STILE APL
#x0BC6 - UNDERBAR APL
#x0BCA U+2218 JOT APL
#x0BCC U+2395 QUAD APL
#x0BCE U+22A4 UP TACK APL
#x0BCF U+25CB CIRCLE APL
#x0BD3 U+2308 UP STILE APL
#x0BD6 - DOWN SHOE (CUP) APL
#x0BD8 - RIGHT SHOE APL
#x0BDA - LEFT SHOE APL
#x0BDC U+22A2 LEFT TACK APL
#x0BFC U+22A3 RIGHT TACK APL
#x0CDF U+2017 DOUBLE LOW LINE Hebrew
#x0CE0 U+05D0 HEBREW LETTER ALEF Hebrew
#x0CE1 U+05D1 HEBREW LETTER BET Hebrew
#x0CE2 U+05D2 HEBREW LETTER GIMEL Hebrew
#x0CE3 U+05D3 HEBREW LETTER DALET Hebrew
#x0CE4 U+05D4 HEBREW LETTER HE Hebrew
#x0CE5 U+05D5 HEBREW LETTER VAV Hebrew
#x0CE6 U+05D6 HEBREW LETTER ZAYIN Hebrew
#x0CE7 U+05D7 HEBREW LETTER HET Hebrew
#x0CE8 U+05D8 HEBREW LETTER TET Hebrew
#x0CE9 U+05D9 HEBREW LETTER YOD Hebrew
#x0CEA U+05DA HEBREW LETTER FINAL KAF Hebrew
#x0CEB U+05DB HEBREW LETTER KAF Hebrew
#x0CEC U+05DC HEBREW LETTER LAMED Hebrew
#x0CED U+05DD HEBREW LETTER FINAL MEM Hebrew
#x0CEE U+05DE HEBREW LETTER MEM Hebrew
#x0CEF U+05DF HEBREW LETTER FINAL NUN Hebrew
#x0CF0 U+05E0 HEBREW LETTER NUN Hebrew
#x0CF1 U+05E1 HEBREW LETTER SAMEKH Hebrew
#x0CF2 U+05E2 HEBREW LETTER AYIN Hebrew
#x0CF3 U+05E3 HEBREW LETTER FINAL PE Hebrew
#x0CF4 U+05E4 HEBREW LETTER PE Hebrew

X Window System Protocol
91 / 159

KEYSYM
value

Unicode
value Name Set

#x0CF5 U+05E5 HEBREW LETTER FINAL TSADI Hebrew
#x0CF6 U+05E6 HEBREW LETTER TSADI Hebrew
#x0CF7 U+05E7 HEBREW LETTER QOF Hebrew
#x0CF8 U+05E8 HEBREW LETTER RESH Hebrew
#x0CF9 U+05E9 HEBREW LETTER SHIN Hebrew
#x0CFA U+05EA HEBREW LETTER TAV Hebrew
#x0DA1 U+0E01 THAI CHARACTER KO KAI Thai
#x0DA2 U+0E02 THAI CHARACTER KHO KHAI Thai
#x0DA3 U+0E03 THAI CHARACTER KHO KHUAT Thai
#x0DA4 U+0E04 THAI CHARACTER KHO KHWAI Thai
#x0DA5 U+0E05 THAI CHARACTER KHO KHON Thai
#x0DA6 U+0E06 THAI CHARACTER KHO RAKHANG Thai
#x0DA7 U+0E07 THAI CHARACTER NGO NGU Thai
#x0DA8 U+0E08 THAI CHARACTER CHO CHAN Thai
#x0DA9 U+0E09 THAI CHARACTER CHO CHING Thai
#x0DAA U+0E0A THAI CHARACTER CHO CHANG Thai
#x0DAB U+0E0B THAI CHARACTER SO SO Thai
#x0DAC U+0E0C THAI CHARACTER CHO CHOE Thai
#x0DAD U+0E0D THAI CHARACTER YO YING Thai
#x0DAE U+0E0E THAI CHARACTER DO CHADA Thai
#x0DAF U+0E0F THAI CHARACTER TO PATAK Thai
#x0DB0 U+0E10 THAI CHARACTER THO THAN Thai
#x0DB1 U+0E11 THAI CHARACTER THO NANGMONTHO Thai
#x0DB2 U+0E12 THAI CHARACTER THO PHUTHAO Thai
#x0DB3 U+0E13 THAI CHARACTER NO NEN Thai
#x0DB4 U+0E14 THAI CHARACTER DO DEK Thai
#x0DB5 U+0E15 THAI CHARACTER TO TAO Thai
#x0DB6 U+0E16 THAI CHARACTER THO THUNG Thai
#x0DB7 U+0E17 THAI CHARACTER THO THAHAN Thai
#x0DB8 U+0E18 THAI CHARACTER THO THONG Thai
#x0DB9 U+0E19 THAI CHARACTER NO NU Thai
#x0DBA U+0E1A THAI CHARACTER BO BAIMAI Thai
#x0DBB U+0E1B THAI CHARACTER PO PLA Thai
#x0DBC U+0E1C THAI CHARACTER PHO PHUNG Thai
#x0DBD U+0E1D THAI CHARACTER FO FA Thai
#x0DBE U+0E1E THAI CHARACTER PHO PHAN Thai
#x0DBF U+0E1F THAI CHARACTER FO FAN Thai
#x0DC0 U+0E20 THAI CHARACTER PHO SAMPHAO Thai
#x0DC1 U+0E21 THAI CHARACTER MO MA Thai
#x0DC2 U+0E22 THAI CHARACTER YO YAK Thai
#x0DC3 U+0E23 THAI CHARACTER RO RUA Thai
#x0DC4 U+0E24 THAI CHARACTER RU Thai
#x0DC5 U+0E25 THAI CHARACTER LO LING Thai
#x0DC6 U+0E26 THAI CHARACTER LU Thai
#x0DC7 U+0E27 THAI CHARACTER WO WAEN Thai
#x0DC8 U+0E28 THAI CHARACTER SO SALA Thai
#x0DC9 U+0E29 THAI CHARACTER SO RUSI Thai
#x0DCA U+0E2A THAI CHARACTER SO SUA Thai
#x0DCB U+0E2B THAI CHARACTER HO HIP Thai
#x0DCC U+0E2C THAI CHARACTER LO CHULA Thai
#x0DCD U+0E2D THAI CHARACTER O ANG Thai
#x0DCE U+0E2E THAI CHARACTER HO NOKHUK Thai
#x0DCF U+0E2F THAI CHARACTER PAIYANNOI Thai
#x0DD0 U+0E30 THAI CHARACTER SARA A Thai

X Window System Protocol
92 / 159

KEYSYM
value

Unicode
value Name Set

#x0DD1 U+0E31 THAI CHARACTER MAI HAN-AKAT Thai
#x0DD2 U+0E32 THAI CHARACTER SARA AA Thai
#x0DD3 U+0E33 THAI CHARACTER SARA AM Thai
#x0DD4 U+0E34 THAI CHARACTER SARA I Thai
#x0DD5 U+0E35 THAI CHARACTER SARA II Thai
#x0DD6 U+0E36 THAI CHARACTER SARA UE Thai
#x0DD7 U+0E37 THAI CHARACTER SARA UEE Thai
#x0DD8 U+0E38 THAI CHARACTER SARA U Thai
#x0DD9 U+0E39 THAI CHARACTER SARA UU Thai
#x0DDA U+0E3A THAI CHARACTER PHINTHU Thai
#x0DDF U+0E3F THAI CURRENCY SYMBOL BAHT Thai
#x0DE0 U+0E40 THAI CHARACTER SARA E Thai
#x0DE1 U+0E41 THAI CHARACTER SARA AE Thai
#x0DE2 U+0E42 THAI CHARACTER SARA O Thai
#x0DE3 U+0E43 THAI CHARACTER SARA AI MAIMUAN Thai
#x0DE4 U+0E44 THAI CHARACTER SARA AI MAIMALAI Thai
#x0DE5 U+0E45 THAI CHARACTER LAKKHANGYAO Thai
#x0DE6 U+0E46 THAI CHARACTER MAIYAMOK Thai
#x0DE7 U+0E47 THAI CHARACTER MAITAIKHU Thai
#x0DE8 U+0E48 THAI CHARACTER MAI EK Thai
#x0DE9 U+0E49 THAI CHARACTER MAI THO Thai
#x0DEA U+0E4A THAI CHARACTER MAI TRI Thai
#x0DEB U+0E4B THAI CHARACTER MAI CHATTAWA Thai
#x0DEC U+0E4C THAI CHARACTER THANTHAKHAT Thai
#x0DED U+0E4D THAI CHARACTER NIKHAHIT Thai
#x0DF0 U+0E50 THAI DIGIT ZERO Thai
#x0DF1 U+0E51 THAI DIGIT ONE Thai
#x0DF2 U+0E52 THAI DIGIT TWO Thai
#x0DF3 U+0E53 THAI DIGIT THREE Thai
#x0DF4 U+0E54 THAI DIGIT FOUR Thai
#x0DF5 U+0E55 THAI DIGIT FIVE Thai
#x0DF6 U+0E56 THAI DIGIT SIX Thai
#x0DF7 U+0E57 THAI DIGIT SEVEN Thai
#x0DF8 U+0E58 THAI DIGIT EIGHT Thai
#x0DF9 U+0E59 THAI DIGIT NINE Thai
#x0EA1 - HANGUL KIYEOG Korean
#x0EA2 - HANGUL SSANG KIYEOG Korean
#x0EA3 - HANGUL KIYEOG SIOS Korean
#x0EA4 - HANGUL NIEUN Korean
#x0EA5 - HANGUL NIEUN JIEUJ Korean
#x0EA6 - HANGUL NIEUN HIEUH Korean
#x0EA7 - HANGUL DIKEUD Korean
#x0EA8 - HANGUL SSANG DIKEUD Korean
#x0EA9 - HANGUL RIEUL Korean
#x0EAA - HANGUL RIEUL KIYEOG Korean
#x0EAB - HANGUL RIEUL MIEUM Korean
#x0EAC - HANGUL RIEUL PIEUB Korean
#x0EAD - HANGUL RIEUL SIOS Korean
#x0EAE - HANGUL RIEUL TIEUT Korean
#x0EAF - HANGUL RIEUL PHIEUF Korean
#x0EB0 - HANGUL RIEUL HIEUH Korean
#x0EB1 - HANGUL MIEUM Korean
#x0EB2 - HANGUL PIEUB Korean
#x0EB3 - HANGUL SSANG PIEUB Korean

X Window System Protocol
93 / 159

KEYSYM
value

Unicode
value Name Set

#x0EB4 - HANGUL PIEUB SIOS Korean
#x0EB5 - HANGUL SIOS Korean
#x0EB6 - HANGUL SSANG SIOS Korean
#x0EB7 - HANGUL IEUNG Korean
#x0EB8 - HANGUL JIEUJ Korean
#x0EB9 - HANGUL SSANG JIEUJ Korean
#x0EBA - HANGUL CIEUC Korean
#x0EBB - HANGUL KHIEUQ Korean
#x0EBC - HANGUL TIEUT Korean
#x0EBD - HANGUL PHIEUF Korean
#x0EBE - HANGUL HIEUH Korean
#x0EBF - HANGUL A Korean
#x0EC0 - HANGUL AE Korean
#x0EC1 - HANGUL YA Korean
#x0EC2 - HANGUL YAE Korean
#x0EC3 - HANGUL EO Korean
#x0EC4 - HANGUL E Korean
#x0EC5 - HANGUL YEO Korean
#x0EC6 - HANGUL YE Korean
#x0EC7 - HANGUL O Korean
#x0EC8 - HANGUL WA Korean
#x0EC9 - HANGUL WAE Korean
#x0ECA - HANGUL OE Korean
#x0ECB - HANGUL YO Korean
#x0ECC - HANGUL U Korean
#x0ECD - HANGUL WEO Korean
#x0ECE - HANGUL WE Korean
#x0ECF - HANGUL WI Korean
#x0ED0 - HANGUL YU Korean
#x0ED1 - HANGUL EU Korean
#x0ED2 - HANGUL YI Korean
#x0ED3 - HANGUL I Korean
#x0ED4 - HANGUL JONG SEONG KIYEOG Korean
#x0ED5 - HANGUL JONG SEONG SSANG KIYEOG Korean
#x0ED6 - HANGUL JONG SEONG KIYEOG SIOS Korean
#x0ED7 - HANGUL JONG SEONG NIEUN Korean
#x0ED8 - HANGUL JONG SEONG NIEUN JIEUJ Korean
#x0ED9 - HANGUL JONG SEONG NIEUN HIEUH Korean
#x0EDA - HANGUL JONG SEONG DIKEUD Korean
#x0EDB - HANGUL JONG SEONG RIEUL Korean
#x0EDC - HANGUL JONG SEONG RIEUL KIYEOG Korean
#x0EDD - HANGUL JONG SEONG RIEUL MIEUM Korean
#x0EDE - HANGUL JONG SEONG RIEUL PIEUB Korean
#x0EDF - HANGUL JONG SEONG RIEUL SIOS Korean
#x0EE0 - HANGUL JONG SEONG RIEUL TIEUT Korean
#x0EE1 - HANGUL JONG SEONG RIEUL PHIEUF Korean
#x0EE2 - HANGUL JONG SEONG RIEUL HIEUH Korean
#x0EE3 - HANGUL JONG SEONG MIEUM Korean
#x0EE4 - HANGUL JONG SEONG PIEUB Korean
#x0EE5 - HANGUL JONG SEONG PIEUB SIOS Korean
#x0EE6 - HANGUL JONG SEONG SIOS Korean
#x0EE7 - HANGUL JONG SEONG SSANG SIOS Korean
#x0EE8 - HANGUL JONG SEONG IEUNG Korean
#x0EE9 - HANGUL JONG SEONG JIEUJ Korean

X Window System Protocol
94 / 159

KEYSYM
value

Unicode
value Name Set

#x0EEA - HANGUL JONG SEONG CIEUC Korean
#x0EEB - HANGUL JONG SEONG KHIEUQ Korean
#x0EEC - HANGUL JONG SEONG TIEUT Korean
#x0EED - HANGUL JONG SEONG PHIEUF Korean
#x0EEE - HANGUL JONG SEONG HIEUH Korean
#x0EEF - HANGUL RIEUL YEORIN HIEUH Korean
#x0EF0 - HANGUL SUNKYEONGEUM MIEUM Korean
#x0EF1 - HANGUL SUNKYEONGEUM PIEUB Korean
#x0EF2 - HANGUL PAN SIOS Korean
#x0EF3 - HANGUL KKOGJI DALRIN IEUNG Korean
#x0EF4 - HANGUL SUNKYEONGEUM PHIEUF Korean
#x0EF5 - HANGUL YEORIN HIEUH Korean
#x0EF6 - HANGUL ARAE A Korean
#x0EF7 - HANGUL ARAE AE Korean
#x0EF8 - HANGUL JONG SEONG PAN SIOS Korean
#x0EF9 - HANGUL JONG SEONG KKOGJI DALRIN IEUNG Korean
#x0EFA - HANGUL JONG SEONG YEORIN HIEUH Korean
#x0EFF - KOREAN WON Korean
#x13BC U+0152 LATIN CAPITAL LIGATURE OE Latin-9
#x13BD U+0153 LATIN SMALL LIGATURE OE Latin-9
#x13BE U+0178 LATIN CAPITAL LETTER Y WITH DIAERESIS Latin-9
#x20A0 - CURRENCY ECU SIGN Currency
#x20A1 - CURRENCY COLON SIGN Currency
#x20A2 - CURRENCY CRUZEIRO SIGN Currency
#x20A3 - CURRENCY FRENCH FRANC SIGN Currency
#x20A4 - CURRENCY LIRA SIGN Currency
#x20A5 - CURRENCY MILL SIGN Currency
#x20A6 - CURRENCY NAIRA SIGN Currency
#x20A7 - CURRENCY PESETA SIGN Currency
#x20A8 - CURRENCY RUPEE SIGN Currency
#x20A9 - CURRENCY WON SIGN Currency
#x20AA - CURRENCY NEW SHEQEL SIGN Currency
#x20AB - CURRENCY DONG SIGN Currency
#x20AC U+20AC CURRENCY EURO SIGN Currency

X Window System Protocol
95 / 159

Appendix B

Protocol Encoding

B.1 Syntactic Conventions

All numbers are in decimal, unless prefixed with #x, in which case they are in hexadecimal (base 16).

The general syntax used to describe requests, replies, errors, events, and compound types is:

NameofThing
encode-form
...
encode-form

Each encode-form describes a single component.

For components described in the protocol as:

name: TYPE

the encode-form is:

N TYPE name

N is the number of bytes occupied in the data stream, and TYPE is the interpretation of those bytes. For example,

depth: CARD8

becomes:

1 CARD8 depth

For components with a static numeric value the encode-form is:

N value name

The value is always interpreted as an N-byte unsigned integer. For example, the first two bytes of a Window error are always
zero (indicating an error in general) and three (indicating the Window error in particular):

1 0 Error
1 3 code

X Window System Protocol
96 / 159

For components described in the protocol as:

name: { Name1 ,..., NameI }

the encode-form is:

N name
value1 Name1
...
valueI NameI

The value is always interpreted as an N-byte unsigned integer. Note that the size of N is sometimes larger than that strictly
required to encode the values. For example:

class: { InputOutput, InputOnly, CopyFromParent }

becomes:

2 class
0 CopyFromParent
1 InputOutput
2 InputOnly

For components described in the protocol as:

NAME: TYPE or Alternative1 ...or AlternativeI

the encode-form is:

N TYPE NAME
value1 Alternative1
...
valueI AlternativeI

The alternative values are guaranteed not to conflict with the encoding of TYPE. For example:

destination: WINDOW or PointerWindow or InputFocus

becomes:

4 WINDOW destination
0 PointerWindow
1 InputFocus

For components described in the protocol as:

value-mask: BITMASK

the encode-form is:

N BITMASK value-mask
mask1 mask-name1
...
maskI mask-nameI

The individual bits in the mask are specified and named, and N is 2 or 4. The most-significant bit in a BITMASK is reserved
for use in defining chained (multiword) bitmasks, as extensions augment existing core requests. The precise interpretation of
this bit is not yet defined here, although a probable mechanism is that a 1-bit indicates that another N bytes of bitmask follows,
with bits within the overall mask still interpreted from least-significant to most-significant with an N-byte unit, with N-byte units
interpreted in stream order, and with the overall mask being byte-swapped in individual N-byte units.

For LISTofVALUE encodings, the request is followed by a section of the form:

X Window System Protocol
97 / 159

VALUEs
encode-form
...
encode-form

listing an encode-form for each VALUE. The NAME in each encode-form keys to the corresponding BITMASK bit. The
encoding of a VALUE always occupies four bytes, but the number of bytes specified in the encoding-form indicates how many
of the least-significant bytes are actually used; the remaining bytes are unused and their values do not matter.

In various cases, the number of bytes occupied by a component will be specified by a lowercase single-letter variable name
instead of a specific numeric value, and often some other component will have its value specified as a simple numeric expression
involving these variables. Components specified with such expressions are always interpreted as unsigned integers. The scope
of such variables is always just the enclosing request, reply, error, event, or compound type structure. For example:

2 3+n request length
4n LISTofPOINT points

For unused bytes (the values of the bytes are undefined and do no matter), the encode-form is:

N unused

If the number of unused bytes is variable, the encode-form typically is:

p unused, p=pad(E)

where E is some expression, and pad(E) is the number of bytes needed to round E up to a multiple of four.

pad(E) = (4 - (E mod 4)) mod 4

B.2 Common Types

LISTofFOO In this document the LISTof notation strictly means some number of repetitions of the FOO encoding; the actual
length of the list is encoded elsewhere.

SETofFOO A set is always represented by a bitmask, with a 1-bit indicating presence in the set.

BITMASK: CARD32
WINDOW: CARD32
PIXMAP: CARD32
CURSOR: CARD32
FONT: CARD32
GCONTEXT: CARD32
COLORMAP: CARD32
DRAWABLE: CARD32
FONTABLE: CARD32
ATOM: CARD32
VISUALID: CARD32
BYTE: 8-bit value
INT8: 8-bit signed integer
INT16: 16-bit signed integer
INT32: 32-bit signed integer
CARD8: 8-bit unsigned integer
CARD16: 16-bit unsigned integer
CARD32: 32-bit unsigned integer
TIMESTAMP: CARD32

X Window System Protocol
98 / 159

BITGRAVITY
0 Forget
1 NorthWest
2 North
3 NorthEast
4 West
5 Center
6 East
7 SouthWest
8 South
9 SouthEast
10 Static

WINGRAVITY
0 Unmap
1 NorthWest
2 North
3 NorthEast
4 West
5 Center
6 East
7 SouthWest
8 South
9 SouthEast
10 Static

BOOL
0 False
1 True

SETofEVENT
#x00000001 KeyPress
#x00000002 KeyRelease
#x00000004 ButtonPress
#x00000008 ButtonRelease
#x00000010 EnterWindow
#x00000020 LeaveWindow
#x00000040 PointerMotion
#x00000080 PointerMotionHint
#x00000100 Button1Motion
#x00000200 Button2Motion
#x00000400 Button3Motion
#x00000800 Button4Motion
#x00001000 Button5Motion
#x00002000 ButtonMotion
#x00004000 KeymapState
#x00008000 Exposure
#x00010000 VisibilityChange
#x00020000 StructureNotify
#x00040000 ResizeRedirect
#x00080000 SubstructureNotify
#x00100000 SubstructureRedirect
#x00200000 FocusChange
#x00400000 PropertyChange
#x00800000 ColormapChange
#x01000000 OwnerGrabButton
#xFE000000 unused but must be zero

X Window System Protocol
99 / 159

SETofPOINTEREVENT
encodings are the same as for SETofEVENT, except with
#xFFFF8003 unused but must be zero

SETofDEVICEEVENT
encodings are the same as for SETofEVENT, except with
#xFFFFC0B0 unused but must be zero

KEYSYM: CARD32
KEYCODE: CARD8
BUTTON: CARD8

SETofKEYBUTMASK
#x0001 Shift
#x0002 Lock
#x0004 Control
#x0008 Mod1
#x0010 Mod2
#x0020 Mod3
#x0040 Mod4
#x0080 Mod5
#x0100 Button1
#x0200 Button2
#x0400 Button3
#x0800 Button4
#x1000 Button5
#xE000 unused but must be zero

SETofKEYMASK
encodings are the same as for SETofKEYBUTMASK, except with
#xFF00 unused but must be zero

STRING8: LISTofCARD8
STRING16: LISTofCHAR2B

CHAR2B
1 CARD8 byte1
1 CARD8 byte2

POINT
2 INT16 x
2 INT16 y

RECTANGLE
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height

ARC
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 INT16 angle1
2 INT16 angle2

X Window System Protocol
100 / 159

HOST
1 family

0 Internet
1 DECnet
2 Chaos
5 ServerInterpreted
6 InternetV6

1 unused
2 n length of address
n LISTofBYTE address
p unused, p=pad(n)

STR
1 n length of name in bytes
n STRING8 name

B.3 Errors

Request
1 0 Error
1 1 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Value
1 0 Error
1 2 code
2 CARD16 sequence number
4 <32-bits> bad value
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Window
1 0 Error
1 3 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Pixmap
1 0 Error
1 4 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

X Window System Protocol
101 / 159

Atom
1 0 Error
1 5 code
2 CARD16 sequence number
4 CARD32 bad atom id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Cursor
1 0 Error
1 6 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Font
1 0 Error
1 7 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Match
1 0 Error
1 8 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Drawable
1 0 Error
1 9 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Access
1 0 Error
1 10 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Alloc
1 0 Error
1 11 code

X Window System Protocol
102 / 159

2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Colormap
1 0 Error
1 12 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

GContext
1 0 Error
1 13 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

IDChoice
1 0 Error
1 14 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Name
1 0 Error
1 15 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Length
1 0 Error
1 16 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Implementation
1 0 Error
1 17 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode

X Window System Protocol
103 / 159

1 CARD8 major opcode
21 unused

B.4 Keyboards

KEYCODE values are always greater than 7 (and less than 256).

KEYSYM values with the bit #x10000000 set are reserved as vendor-specific.

The names and encodings of the standard KEYSYM values are contained in Appendix A, Keysym Encoding.

B.5 Pointers

BUTTON values are numbered starting with one.

B.6 Predefined Atoms

PRIMARY 1 WM_NORMAL_HINTS 40
SECONDARY 2 WM_SIZE_HINTS 41
ARC 3 WM_ZOOM_HINTS 42
ATOM 4 MIN_SPACE 43
BITMAP 5 NORM_SPACE 44
CARDINAL 6 MAX_SPACE 45
COLORMAP 7 END_SPACE 46
CURSOR 8 SUPERSCRIPT_X 47
CUT_BUFFER0 9 SUPERSCRIPT_Y 48
CUT_BUFFER1 10 SUBSCRIPT_X 49
CUT_BUFFER2 11 SUBSCRIPT_Y 50
CUT_BUFFER3 12 UNDERLINE_POSITION 51
CUT_BUFFER4 13 UNDERLINE_THICKNESS 52
CUT_BUFFER5 14 STRIKEOUT_ASCENT 53
CUT_BUFFER6 15 STRIKEOUT_DESCENT 54
CUT_BUFFER7 16 ITALIC_ANGLE 55
DRAWABLE 17 X_HEIGHT 56
FONT 18 QUAD_WIDTH 57
INTEGER 19 WEIGHT 58
PIXMAP 20 POINT_SIZE 59
POINT 21 RESOLUTION 60
RECTANGLE 22 COPYRIGHT 61
RESOURCE_MANAGER 23 NOTICE 62
RGB_COLOR_MAP 24 FONT_NAME 63
RGB_BEST_MAP 25 FAMILY_NAME 64
RGB_BLUE_MAP 26 FULL_NAME 65
RGB_DEFAULT_MAP 27 CAP_HEIGHT 66
RGB_GRAY_MAP 28 WM_CLASS 67
RGB_GREEN_MAP 29 WM_TRANSIENT_FOR 68
RGB_RED_MAP 30
STRING 31
VISUALID 32
WINDOW 33
WM_COMMAND 34
WM_HINTS 35
WM_CLIENT_MACHINE 36

X Window System Protocol
104 / 159

WM_ICON_NAME 37
WM_ICON_SIZE 38
WM_NAME 39

B.7 Connection Setup

For TCP connections, displays on a given host are numbered starting from 0, and the server for display N listens and accepts
connections on port 6000 + N. For DECnet connections, displays on a given host are numbered starting from 0, and the server for
display N listens and accepts connections on the object name obtained by concatenating "X$X" with the decimal representation
of N, for example, X$X0 and X$X1.

Information sent by the client at connection setup:

1 byte-order
#x42 MSB first
#x6C LSB first

1 unused
2 CARD16 protocol-major-version
2 CARD16 protocol-minor-version
2 n length of authorization-protocol-name
2 d length of authorization-protocol-data
2 unused
n STRING8 authorization-protocol-name
p unused, p=pad(n)
d STRING8 authorization-protocol-data
q unused, q=pad(d)

Except where explicitly noted in the protocol, all 16-bit and 32-bit quantities sent by the client must be transmitted with the
specified byte order, and all 16-bit and 32-bit quantities returned by the server will be transmitted with this byte order.

Information received by the client if the connection is refused:

1 0 Failed
1 n length of reason in bytes
2 CARD16 protocol-major-version
2 CARD16 protocol-minor-version
2 (n+p)/4 length in 4-byte units of "additional data"
n STRING8 reason
p unused, p=pad(n)

Information received by the client if further authentication is required:

1 2 Authenticate
5 unused
2 (n+p)/4 length in 4-byte units of "additional data"
n STRING8 reason
p unused, p=pad(n)

Information received by the client if the connection is accepted:

1 1 Success
1 unused
2 CARD16 protocol-major-version
2 CARD16 protocol-minor-version

X Window System Protocol
105 / 159

2 8+2n+(v+p+m)/4 length in 4-byte units of
"additional data"

4 CARD32 release-number
4 CARD32 resource-id-base
4 CARD32 resource-id-mask
4 CARD32 motion-buffer-size
2 v length of vendor
2 CARD16 maximum-request-length
1 CARD8 number of SCREENs in roots
1 n number for FORMATs in

pixmap-formats
1 image-byte-order

0 LSBFirst
1 MSBFirst

1 bitmap-format-bit-order
0 LeastSignificant
1 MostSignificant

1 CARD8 bitmap-format-scanline-unit
1 CARD8 bitmap-format-scanline-pad
1 KEYCODE min-keycode
1 KEYCODE max-keycode
4 unused
v STRING8 vendor
p unused, p=pad(v)
8n LISTofFORMAT pixmap-formats
m LISTofSCREEN roots (m is always a multiple of 4)

FORMAT
1 CARD8 depth
1 CARD8 bits-per-pixel
1 CARD8 scanline-pad
5 unused

SCREEN
4 WINDOW root
4 COLORMAP default-colormap
4 CARD32 white-pixel
4 CARD32 black-pixel
4 SETofEVENT current-input-masks
2 CARD16 width-in-pixels
2 CARD16 height-in-pixels
2 CARD16 width-in-millimeters
2 CARD16 height-in-millimeters
2 CARD16 min-installed-maps
2 CARD16 max-installed-maps
4 VISUALID root-visual
1 backing-stores

0 Never
1 WhenMapped
2 Always

1 BOOL save-unders
1 CARD8 root-depth
1 CARD8 number of DEPTHs in allowed-depths
n LISTofDEPTH allowed-depths (n is always a

multiple of 4)

DEPTH

X Window System Protocol
106 / 159

1 CARD8 depth
1 unused
2 n number of VISUALTYPES in visuals
4 unused
24n LISTofVISUALTYPE visuals

VISUALTYPE
4 VISUALID visual-id
1 class

0 StaticGray
1 GrayScale
2 StaticColor
3 PseudoColor
4 TrueColor
5 DirectColor

1 CARD8 bits-per-rgb-value
2 CARD16 colormap-entries
4 CARD32 red-mask
4 CARD32 green-mask
4 CARD32 blue-mask
4 unused

B.8 Requests

CreateWindow
1 1 opcode
1 CARD8 depth
2 8+n request length
4 WINDOW wid
4 WINDOW parent
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
2 class

0 CopyFromParent
1 InputOutput
2 InputOnly

4 VISUALID visual
0 CopyFromParent

4 BITMASK value-mask (has n bits set to 1)
#x00000001 background-pixmap
#x00000002 background-pixel
#x00000004 border-pixmap
#x00000008 border-pixel
#x00000010 bit-gravity
#x00000020 win-gravity
#x00000040 backing-store
#x00000080 backing-planes
#x00000100 backing-pixel
#x00000200 override-redirect
#x00000400 save-under
#x00000800 event-mask
#x00001000 do-not-propagate-mask

X Window System Protocol
107 / 159

#x00002000 colormap
#x00004000 cursor

4n LISTofVALUE value-list

VALUEs
4 PIXMAP background-pixmap

0 None
1 ParentRelative

4 CARD32 background-pixel
4 PIXMAP border-pixmap

0 CopyFromParent
4 CARD32 border-pixel
1 BITGRAVITY bit-gravity
1 WINGRAVITY win-gravity
1 backing-store

0 NotUseful
1 WhenMapped
2 Always

4 CARD32 backing-planes
4 CARD32 backing-pixel
1 BOOL override-redirect
1 BOOL save-under
4 SETofEVENT event-mask
4 SETofDEVICEEVENT do-not-propagate-mask
4 COLORMAP colormap

0 CopyFromParent
4 CURSOR cursor

0 None

ChangeWindowAttributes
1 2 opcode
1 unused
2 3+n request length
4 WINDOW window
4 BITMASK value-mask (has n bits set to 1)

encodings are the same as for CreateWindow
4n LISTofVALUE value-list

encodings are the same as for CreateWindow

GetWindowAttributes
1 3 opcode
1 unused
2 2 request length
4 WINDOW window

->
1 1 Reply
1 backing-store

0 NotUseful
1 WhenMapped
2 Always

2 CARD16 sequence number
4 3 reply length
4 VISUALID visual
2 class

1 InputOutput
2 InputOnly

X Window System Protocol
108 / 159

1 BITGRAVITY bit-gravity
1 WINGRAVITY win-gravity
4 CARD32 backing-planes
4 CARD32 backing-pixel
1 BOOL save-under
1 BOOL map-is-installed
1 map-state

0 Unmapped
1 Unviewable
2 Viewable

1 BOOL override-redirect
4 COLORMAP colormap

0 None
4 SETofEVENT all-event-masks
4 SETofEVENT your-event-mask
2 SETofDEVICEEVENT do-not-propagate-mask
2 unused

DestroyWindow
1 4 opcode
1 unused
2 2 request length
4 WINDOW window

DestroySubwindows
1 5 opcode
1 unused
2 2 request length
4 WINDOW window

ChangeSaveSet
1 6 opcode
1 mode

0 Insert
1 Delete

2 2 request length
4 WINDOW window

ReparentWindow
1 7 opcode
1 unused
2 4 request length
4 WINDOW window
4 WINDOW parent
2 INT16 x
2 INT16 y

MapWindow
1 8 opcode
1 unused
2 2 request length
4 WINDOW window

MapSubwindows
1 9 opcode
1 unused
2 2 request length

X Window System Protocol
109 / 159

4 WINDOW window

UnmapWindow
1 10 opcode
1 unused
2 2 request length
4 WINDOW window

UnmapSubwindows
1 11 opcode
1 unused
2 2 request length
4 WINDOW window

ConfigureWindow
1 12 opcode
1 unused
2 3+n request length
4 WINDOW window
2 BITMASK value-mask (has n bits set to 1)

#x0001 x
#x0002 y
#x0004 width
#x0008 height
#x0010 border-width
#x0020 sibling
#x0040 stack-mode

2 unused
4n LISTofVALUE value-list

VALUEs
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
4 WINDOW sibling
1 stack-mode

0 Above
1 Below
2 TopIf
3 BottomIf
4 Opposite

CirculateWindow
1 13 opcode
1 direction

0 RaiseLowest
1 LowerHighest

2 2 request length
4 WINDOW window

GetGeometry
1 14 opcode
1 unused
2 2 request length
4 DRAWABLE drawable

X Window System Protocol
110 / 159

->
1 1 Reply
1 CARD8 depth
2 CARD16 sequence number
4 0 reply length
4 WINDOW root
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
10 unused

QueryTree
1 15 opcode
1 unused
2 2 request length
4 WINDOW window

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 n reply length
4 WINDOW root
4 WINDOW parent

0 None
2 n number of WINDOWs in children
14 unused
4n LISTofWINDOW children

InternAtom
1 16 opcode
1 BOOL only-if-exists
2 2+(n+p)/4 request length
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 ATOM atom

0 None
20 unused

GetAtomName
1 17 opcode
1 unused
2 2 request length
4 ATOM atom

->

X Window System Protocol
111 / 159

1 1 Reply
1 unused
2 CARD16 sequence number
4 (n+p)/4 reply length
2 n length of name
22 unused
n STRING8 name
p unused, p=pad(n)

ChangeProperty
1 18 opcode
1 mode

0 Replace
1 Prepend
2 Append

2 6+(n+p)/4 request length
4 WINDOW window
4 ATOM property
4 ATOM type
1 CARD8 format
3 unused
4 CARD32 length of data in format units

(= n for format = 8)
(= n/2 for format = 16)
(= n/4 for format = 32)

n LISTofBYTE data
(n is a multiple of 2 for format = 16)
(n is a multiple of 4 for format = 32)

p unused, p=pad(n)

DeleteProperty
1 19 opcode
1 unused
2 3 request length
4 WINDOW window
4 ATOM property

GetProperty
1 20 opcode
1 BOOL delete
2 6 request length
4 WINDOW window
4 ATOM property
4 ATOM type

0 AnyPropertyType
4 CARD32 long-offset
4 CARD32 long-length

->
1 1 Reply
1 CARD8 format
2 CARD16 sequence number
4 (n+p)/4 reply length
4 ATOM type

0 None
4 CARD32 bytes-after

X Window System Protocol
112 / 159

4 CARD32 length of value in format units
(= 0 for format = 0)
(= n for format = 8)
(= n/2 for format = 16)
(= n/4 for format = 32)

12 unused
n LISTofBYTE value

(n is zero for format = 0)
(n is a multiple of 2 for format = 16)
(n is a multiple of 4 for format = 32)

p unused, p=pad(n)

ListProperties
1 21 opcode
1 unused
2 2 request length
4 WINDOW window

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 n reply length
2 n number of ATOMs in atoms
22 unused
4n LISTofATOM atoms

SetSelectionOwner
1 22 opcode
1 unused
2 4 request length
4 WINDOW owner

0 None
4 ATOM selection
4 TIMESTAMP time

0 CurrentTime

GetSelectionOwner
1 23 opcode
1 unused
2 2 request length
4 ATOM selection

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 WINDOW owner

0 None
20 unused

ConvertSelection
1 24 opcode
1 unused
2 6 request length
4 WINDOW requestor

X Window System Protocol
113 / 159

4 ATOM selection
4 ATOM target
4 ATOM property

0 None
4 TIMESTAMP time

0 CurrentTime

SendEvent
1 25 opcode
1 BOOL propagate
2 11 requestlength
4 WINDOW destination

0 PointerWindow
1 InputFocus

4 SETofEVENT event-mask
32 event

standard event format (see the Events section)

GrabPointer
1 26 opcode
1 BOOL owner-events
2 6 request length
4 WINDOW grab-window
2 SETofPOINTEREVENT event-mask
1 pointer-mode

0 Synchronous
1 Asynchronous

1 keyboard-mode
0 Synchronous
1 Asynchronous

4 WINDOW confine-to
0 None

4 CURSOR cursor
0 None

4 TIMESTAMP time
0 CurrentTime

->
1 1 Reply
1 status

0 Success
1 AlreadyGrabbed
2 InvalidTime
3 NotViewable
4 Frozen

2 CARD16 sequence number
4 0 reply length
24 unused

UngrabPointer
1 27 opcode
1 unused
2 2 request length
4 TIMESTAMP time

0 CurrentTime

GrabButton

X Window System Protocol
114 / 159

1 28 opcode
1 BOOL owner-events
2 6 request length
4 WINDOW grab-window
2 SETofPOINTEREVENT event-mask
1 pointer-mode

0 Synchronous
1 Asynchronous

1 keyboard-mode
0 Synchronous
1 Asynchronous

4 WINDOW confine-to
0 None

4 CURSOR cursor
0 None

1 BUTTON button
0 AnyButton

1 unused
2 SETofKEYMASK modifiers

#x8000 AnyModifier

UngrabButton
1 29 opcode
1 BUTTON button

0 AnyButton
2 3 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModifier
2 unused

ChangeActivePointerGrab
1 30 opcode
1 unused
2 4 request length
4 CURSOR cursor

0 None
4 TIMESTAMP time

0 CurrentTime
2 SETofPOINTEREVENT event-mask
2 unused

GrabKeyboard
1 31 opcode
1 BOOL owner-events
2 4 request length
4 WINDOW grab-window
4 TIMESTAMP time

0 CurrentTime
1 pointer-mode

0 Synchronous
1 Asynchronous

1 keyboard-mode
0 Synchronous
1 Asynchronous

2 unused

X Window System Protocol
115 / 159

->
1 1 Reply
1 status

0 Success
1 AlreadyGrabbed
2 InvalidTime
3 NotViewable
4 Frozen

2 CARD16 sequence number
4 0 reply length
24 unused

UngrabKeyboard
1 32 opcode
1 unused
2 2 request length
4 TIMESTAMP time

0 CurrentTime

GrabKey
1 33 opcode
1 BOOL owner-events
2 4 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModifier
1 KEYCODE key

0 AnyKey
1 pointer-mode

0 Synchronous
1 Asynchronous

1 keyboard-mode
0 Synchronous
1 Asynchronous

3 unused

UngrabKey
1 34 opcode
1 KEYCODE key

0 AnyKey
2 3 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModifier
2 unused

AllowEvents
1 35 opcode
1 mode

0 AsyncPointer
1 SyncPointer
2 ReplayPointer
3 AsyncKeyboard
4 SyncKeyboard
5 ReplayKeyboard
6 AsyncBoth
7 SyncBoth

X Window System Protocol
116 / 159

2 2 request length
4 TIMESTAMP time

0 CurrentTime

GrabServer
1 36 opcode
1 unused
2 1 request length

UngrabServer
1 37 opcode
1 unused
2 1 request length

QueryPointer
1 38 opcode
1 unused
2 2 request length
4 WINDOW window

->
1 1 Reply
1 BOOL same-screen
2 CARD16 sequence number
4 0 reply length
4 WINDOW root
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 win-x
2 INT16 win-y
2 SETofKEYBUTMASK mask
6 unused

GetMotionEvents
1 39 opcode
1 unused
2 4 request length
4 WINDOW window
4 TIMESTAMP start

0 CurrentTime
4 TIMESTAMP stop

0 CurrentTime

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 2n reply length
4 n number of TIMECOORDs in events
20 unused
8n LISTofTIMECOORD events

TIMECOORD
4 TIMESTAMP time
2 INT16 x

X Window System Protocol
117 / 159

2 INT16 y

TranslateCoordinates
1 40 opcode
1 unused
2 4 request length
4 WINDOW src-window
4 WINDOW dst-window
2 INT16 src-x
2 INT16 src-y

->
1 1 Reply
1 BOOL same-screen
2 CARD16 sequence number
4 0 reply length
4 WINDOW child

0 None
2 INT16 dst-x
2 INT16 dst-y
16 unused

WarpPointer
1 41 opcode
1 unused
2 6 request length
4 WINDOW src-window

0 None
4 WINDOW dst-window

0 None
2 INT16 src-x
2 INT16 src-y
2 CARD16 src-width
2 CARD16 src-height
2 INT16 dst-x
2 INT16 dst-y

SetInputFocus
1 42 opcode
1 revert-to

0 None
1 PointerRoot
2 Parent

2 3 request length
4 WINDOW focus

0 None
1 PointerRoot

4 TIMESTAMP time
0 CurrentTime

GetInputFocus
1 43 opcode
1 unused
2 1 request length

->
1 1 Reply
1 revert-to

X Window System Protocol
118 / 159

0 None
1 PointerRoot
2 Parent

2 CARD16 sequence number
4 0 reply length
4 WINDOW focus

0 None
1 PointerRoot

20 unused

QueryKeymap
1 44 opcode
1 unused
2 1 request length

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 2 reply length
32 LISTofCARD8 keys

OpenFont
1 45 opcode
1 unused
2 3+(n+p)/4 request length
4 FONT fid
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

CloseFont
1 46 opcode
1 unused
2 2 request length
4 FONT font

QueryFont
1 47 opcode
1 unused
2 2 request length
4 FONTABLE font

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 7+2n+3m reply length
12 CHARINFO min-bounds
4 unused
12 CHARINFO max-bounds
4 unused
2 CARD16 min-char-or-byte2
2 CARD16 max-char-or-byte2
2 CARD16 default-char
2 n number of FONTPROPs in properties

X Window System Protocol
119 / 159

1 draw-direction
0 LeftToRight
1 RightToLeft

1 CARD8 min-byte1
1 CARD8 max-byte1
1 BOOL all-chars-exist
2 INT16 font-ascent
2 INT16 font-descent
4 m number of CHARINFOs in char-infos
8n LISTofFONTPROP properties
12m LISTofCHARINFO char-infos

FONTPROP
4 ATOM name
4 <32-bits> value

CHARINFO
2 INT16 left-side-bearing
2 INT16 right-side-bearing
2 INT16 character-width
2 INT16 ascent
2 INT16 descent
2 CARD16 attributes

QueryTextExtents
1 48 opcode
1 BOOL odd length, True if p = 2
2 2+(2n+p)/4 request length
4 FONTABLE font
2n STRING16 string
p unused, p=pad(2n)

->
1 1 Reply
1 draw-direction

0 LeftToRight
1 RightToLeft

2 CARD16 sequence number
4 0 reply length
2 INT16 font-ascent
2 INT16 font-descent
2 INT16 overall-ascent
2 INT16 overall-descent
4 INT32 overall-width
4 INT32 overall-left
4 INT32 overall-right
4 unused

ListFonts
1 49 opcode
1 unused
2 2+(n+p)/4 request length
2 CARD16 max-names
2 n length of pattern
n STRING8 pattern
p unused, p=pad(n)

X Window System Protocol
120 / 159

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 (n+p)/4 reply length
2 CARD16 number of STRs in names
22 unused
n LISTofSTR names
p unused, p=pad(n)

ListFontsWithInfo
1 50 opcode
1 unused
2 2+(n+p)/4 request length
2 CARD16 max-names
2 n length of pattern
n STRING8 pattern
p unused, p=pad(n)

-> (except for last in series)
1 1 Reply
1 n length of name in bytes
2 CARD16 sequence number
4 7+2m+(n+p)/4 reply length
12 CHARINFO min-bounds
4 unused
12 CHARINFO max-bounds
4 unused
2 CARD16 min-char-or-byte2
2 CARD16 max-char-or-byte2
2 CARD16 default-char
2 m number of FONTPROPs in properties
1 draw-direction

0 LeftToRight
1 RightToLeft

1 CARD8 min-byte1
1 CARD8 max-byte1
1 BOOL all-chars-exist
2 INT16 font-ascent
2 INT16 font-descent
4 CARD32 replies-hint
8m LISTofFONTPROP properties
n STRING8 name
p unused, p=pad(n)

FONTPROP
encodings are the same as for QueryFont

CHARINFO
encodings are the same as for QueryFont

-> (last in series)
1 1 Reply
1 0 last-reply indicator
2 CARD16 sequence number
4 7 reply length
52 unused

X Window System Protocol
121 / 159

SetFontPath
1 51 opcode
1 unused
2 2+(n+p)/4 request length
2 CARD16 number of STRs in path
2 unused
n LISTofSTR path
p unused, p=pad(n)

GetFontPath
1 52 opcode
1 unused
2 1 request list

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 (n+p)/4 reply length
2 CARD16 number of STRs in path
22 unused
n LISTofSTR path
p unused, p=pad(n)

CreatePixmap
1 53 opcode
1 CARD8 depth
2 4 request length
4 PIXMAP pid
4 DRAWABLE drawable
2 CARD16 width
2 CARD16 height

FreePixmap
1 54 opcode
1 unused
2 2 request length
4 PIXMAP pixmap

CreateGC
1 55 opcode
1 unused
2 4+n request length
4 GCONTEXT cid
4 DRAWABLE drawable
4 BITMASK value-mask (has n bits set to 1)

#x00000001 function
#x00000002 plane-mask
#x00000004 foreground
#x00000008 background
#x00000010 line-width
#x00000020 line-style
#x00000040 cap-style
#x00000080 join-style
#x00000100 fill-style
#x00000200 fill-rule

X Window System Protocol
122 / 159

#x00000400 tile
#x00000800 stipple
#x00001000 tile-stipple-x-origin
#x00002000 tile-stipple-y-origin
#x00004000 font
#x00008000 subwindow-mode
#x00010000 graphics-exposures
#x00020000 clip-x-origin
#x00040000 clip-y-origin
#x00080000 clip-mask
#x00100000 dash-offset
#x00200000 dashes
#x00400000 arc-mode

4n LISTofVALUE value-list

VALUEs
1 function

0 Clear
1 And
2 AndReverse
3 Copy
4 AndInverted
5 NoOp
6 Xor
7 Or
8 Nor
9 Equiv

10 Invert
11 OrReverse
12 CopyInverted
13 OrInverted
14 Nand
15 Set

4 CARD32 plane-mask
4 CARD32 foreground
4 CARD32 background
2 CARD16 line-width
1 line-style

0 Solid
1 OnOffDash
2 DoubleDash

1 cap-style
0 NotLast
1 Butt
2 Round
3 Projecting

1 join-style
0 Miter
1 Round
2 Bevel

1 fill-style
0 Solid
1 Tiled
2 Stippled
3 OpaqueStippled

1 fill-rule
0 EvenOdd

X Window System Protocol
123 / 159

1 Winding
4 PIXMAP tile
4 PIXMAP stipple
2 INT16 tile-stipple-x-origin
2 INT16 tile-stipple-y-origin
4 FONT font
1 subwindow-mode

0 ClipByChildren
1 IncludeInferiors

1 BOOL graphics-exposures
2 INT16 clip-x-origin
2 INT16 clip-y-origin
4 PIXMAP clip-mask

0 None
2 CARD16 dash-offset
1 CARD8 dashes
1 arc-mode

0 Chord
1 PieSlice

ChangeGC
1 56 opcode
1 unused
2 3+n request length
4 GCONTEXT gc
4 BITMASK value-mask (has n bits set to 1)

encodings are the same as for CreateGC
4n LISTofVALUE value-list

encodings are the same as for CreateGC

CopyGC
1 57 opcode
1 unused
2 4 request length
4 GCONTEXT src-gc
4 GCONTEXT dst-gc
4 BITMASK value-mask

encodings are the same as for CreateGC

SetDashes
1 58 opcode
1 unused
2 3+(n+p)/4 request length
4 GCONTEXT gc
2 CARD16 dash-offset
2 n length of dashes
n LISTofCARD8 dashes
p unused, p=pad(n)

SetClipRectangles
1 59 opcode
1 ordering

0 UnSorted
1 YSorted
2 YXSorted
3 YXBanded

2 3+2n request length

X Window System Protocol
124 / 159

4 GCONTEXT gc
2 INT16 clip-x-origin
2 INT16 clip-y-origin
8n LISTofRECTANGLE rectangles

FreeGC
1 60 opcode
1 unused
2 2 request length
4 GCONTEXT gc

ClearArea
1 61 opcode
1 BOOL exposures
2 4 request length
4 WINDOW window
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height

CopyArea
1 62 opcode
1 unused
2 7 request length
4 DRAWABLE src-drawable
4 DRAWABLE dst-drawable
4 GCONTEXT gc
2 INT16 src-x
2 INT16 src-y
2 INT16 dst-x
2 INT16 dst-y
2 CARD16 width
2 CARD16 height

CopyPlane
1 63 opcode
1 unused
2 8 request length
4 DRAWABLE src-drawable
4 DRAWABLE dst-drawable
4 GCONTEXT gc
2 INT16 src-x
2 INT16 src-y
2 INT16 dst-x
2 INT16 dst-y
2 CARD16 width
2 CARD16 height
4 CARD32 bit-plane

PolyPoint
1 64 opcode
1 coordinate-mode

0 Origin
1 Previous

2 3+n request length
4 DRAWABLE drawable

X Window System Protocol
125 / 159

4 GCONTEXT gc
4n LISTofPOINT points

PolyLine
1 65 opcode
1 coordinate-mode

0 Origin
1 Previous

2 3+n request length
4 DRAWABLE drawable
4 GCONTEXT gc
4n LISTofPOINT points

PolySegment
1 66 opcode
1 unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofSEGMENT segments

SEGMENT
2 INT16 x1
2 INT16 y1
2 INT16 x2
2 INT16 y2

PolyRectangle
1 67 opcode
1 unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

PolyArc
1 68 opcode
1 unused
2 3+3n request length
4 DRAWABLE drawable
4 GCONTEXT gc
12n LISTofARC arcs

FillPoly
1 69 opcode
1 unused
2 4+n request length
4 DRAWABLE drawable
4 GCONTEXT gc
1 shape

0 Complex
1 Nonconvex
2 Convex

1 coordinate-mode
0 Origin
1 Previous

2 unused

X Window System Protocol
126 / 159

4n LISTofPOINT points

PolyFillRectangle
1 70 opcode
1 unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

PolyFillArc
1 71 opcode
1 unused
2 3+3n request length
4 DRAWABLE drawable
4 GCONTEXT gc
12n LISTofARC arcs

PutImage
1 72 opcode
1 format

0 Bitmap
1 XYPixmap
2 ZPixmap

2 6+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 CARD16 width
2 CARD16 height
2 INT16 dst-x
2 INT16 dst-y
1 CARD8 left-pad
1 CARD8 depth
2 unused
n LISTofBYTE data
p unused, p=pad(n)

GetImage
1 73 opcode
1 format

1 XYPixmap
2 ZPixmap

2 5 request length
4 DRAWABLE drawable
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
4 CARD32 plane-mask

->
1 1 Reply
1 CARD8 depth
2 CARD16 sequence number
4 (n+p)/4 reply length
4 VISUALID visual

0 None

X Window System Protocol
127 / 159

20 unused
n LISTofBYTE data
p unused, p=pad(n)

PolyText8
1 74 opcode
1 unused
2 4+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y
n LISTofTEXTITEM8 items
p unused, p=pad(n) (p is always 0

or 1)

TEXTITEM8
1 m length of string (cannot be 255)
1 INT8 delta
m STRING8 string

or
1 255 font-shift indicator
1 font byte 3 (most-significant)
1 font byte 2
1 font byte 1
1 font byte 0 (least-significant)

PolyText16
1 75 opcode
1 unused
2 4+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y
n LISTofTEXTITEM16 items
p unused, p=pad(n) (p must be 0 or

1)

TEXTITEM16
1 m number of CHAR2Bs in string

(cannot be 255)
1 INT8 delta
2m STRING16 string

or
1 255 font-shift indicator
1 font byte 3 (most-significant)
1 font byte 2
1 font byte 1
1 font byte 0 (least-significant)

ImageText8
1 76 opcode
1 n length of string
2 4+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc

X Window System Protocol
128 / 159

2 INT16 x
2 INT16 y
n STRING8 string
p unused, p=pad(n)

ImageText16
1 77 opcode
1 n number of CHAR2Bs in string
2 4+(2n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y
2n STRING16 string
p unused, p=pad(2n)

CreateColormap
1 78 opcode
1 alloc

0 None
1 All

2 4 request length
4 COLORMAP mid
4 WINDOW window
4 VISUALID visual

FreeColormap
1 79 opcode
1 unused
2 2 request length
4 COLORMAP cmap

CopyColormapAndFree
1 80 opcode
1 unused
2 3 request length
4 COLORMAP mid
4 COLORMAP src-cmap

InstallColormap
1 81 opcode
1 unused
2 2 request length
4 COLORMAP cmap

UninstallColormap
1 82 opcode
1 unused
2 2 request length
4 COLORMAP cmap

ListInstalledColormaps
1 83 opcode
1 unused
2 2 request length
4 WINDOW window

X Window System Protocol
129 / 159

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 n reply length
2 n number of COLORMAPs in cmaps
22 unused
4n LISTofCOLORMAP cmaps

AllocColor
1 84 opcode
1 unused
2 4 request length
4 COLORMAP cmap
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused
4 CARD32 pixel
12 unused

AllocNamedColor
1 85 opcode
1 unused
2 3+(n+p)/4 request length
4 COLORMAP cmap
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 CARD32 pixel
2 CARD16 exact-red
2 CARD16 exact-green
2 CARD16 exact-blue
2 CARD16 visual-red
2 CARD16 visual-green
2 CARD16 visual-blue
8 unused

AllocColorCells
1 86 opcode

X Window System Protocol
130 / 159

1 BOOL contiguous
2 3 request length
4 COLORMAP cmap
2 CARD16 colors
2 CARD16 planes

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 n+m reply length
2 n number of CARD32s in pixels
2 m number of CARD32s in masks
20 unused
4n LISTofCARD32 pixels
4m LISTofCARD32 masks

AllocColorPlanes
1 87 opcode
1 BOOL contiguous
2 4 request length
4 COLORMAP cmap
2 CARD16 colors
2 CARD16 reds
2 CARD16 greens
2 CARD16 blues

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 n reply length
2 n number of CARD32s in pixels
2 unused
4 CARD32 red-mask
4 CARD32 green-mask
4 CARD32 blue-mask
8 unused
4n LISTofCARD32 pixels

FreeColors
1 88 opcode
1 unused
2 3+n request length
4 COLORMAP cmap
4 CARD32 plane-mask
4n LISTofCARD32 pixels

StoreColors
1 89 opcode
1 unused
2 2+3n request length
4 COLORMAP cmap
12n LISTofCOLORITEM items

COLORITEM
4 CARD32 pixel

X Window System Protocol
131 / 159

2 CARD16 red
2 CARD16 green
2 CARD16 blue
1 do-red, do-green, do-blue

#x01 do-red (1 is True, 0 is False)
#x02 do-green (1 is True, 0 is False)
#x04 do-blue (1 is True, 0 is False)
#xF8 unused

1 unused

StoreNamedColor
1 90 opcode
1 do-red, do-green, do-blue

#x01 do-red (1 is True, 0 is False)
#x02 do-green (1 is True, 0 is False)
#x04 do-blue (1 is True, 0 is False)
#xF8 unused

2 4+(n+p)/4 request length
4 COLORMAP cmap
4 CARD32 pixel
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

QueryColors
1 91 opcode
1 unused
2 2+n request length
4 COLORMAP cmap
4n LISTofCARD32 pixels

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 2n reply length
2 n number of RGBs in colors
22 unused
8n LISTofRGB colors

RGB
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused

LookupColor
1 92 opcode
1 unused
2 3+(n+p)/4 request length
4 COLORMAP cmap
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

X Window System Protocol
132 / 159

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 exact-red
2 CARD16 exact-green
2 CARD16 exact-blue
2 CARD16 visual-red
2 CARD16 visual-green
2 CARD16 visual-blue
12 unused

CreateCursor
1 93 opcode
1 unused
2 8 request length
4 CURSOR cid
4 PIXMAP source
4 PIXMAP mask

0 None
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue
2 CARD16 x
2 CARD16 y

CreateGlyphCursor
1 94 opcode
1 unused
2 8 request length
4 CURSOR cid
4 FONT source-font
4 FONT mask-font

0 None
2 CARD16 source-char
2 CARD16 mask-char
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue

FreeCursor
1 95 opcode
1 unused
2 2 request length
4 CURSOR cursor

RecolorCursor
1 96 opcode
1 unused
2 5 request length

X Window System Protocol
133 / 159

4 CURSOR cursor
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue

QueryBestSize
1 97 opcode
1 class

0 Cursor
1 Tile
2 Stipple

2 3 request length
4 DRAWABLE drawable
2 CARD16 width
2 CARD16 height

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 width
2 CARD16 height
20 unused

QueryExtension
1 98 opcode
1 unused
2 2+(n+p)/4 request length
2 n length of name
2 unused
n STRING8 name
p unused, p=pad(n)

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
1 BOOL present
1 CARD8 major-opcode
1 CARD8 first-event
1 CARD8 first-error
20 unused

ListExtensions
1 99 opcode
1 unused
2 1 request length

->
1 1 Reply
1 CARD8 number of STRs in names
2 CARD16 sequence number

X Window System Protocol
134 / 159

4 (n+p)/4 reply length
24 unused
n LISTofSTR names
p unused, p=pad(n)

ChangeKeyboardMapping
1 100 opcode
1 n keycode-count
2 2+nm request length
1 KEYCODE first-keycode
1 m keysyms-per-keycode
2 unused
4nm LISTofKEYSYM keysyms

GetKeyboardMapping
1 101 opcode
1 unused
2 2 request length
1 KEYCODE first-keycode
1 m count
2 unused

->
1 1 Reply
1 n keysyms-per-keycode
2 CARD16 sequence number
4 nm reply length (m = count field

from the request)
24 unused
4nm LISTofKEYSYM keysyms

ChangeKeyboardControl
1 102 opcode
1 unused
2 2+n request length
4 BITMASK value-mask (has n bits set to 1)

#x0001 key-click-percent
#x0002 bell-percent
#x0004 bell-pitch
#x0008 bell-duration
#x0010 led
#x0020 led-mode
#x0040 key
#x0080 auto-repeat-mode

4n LISTofVALUE value-list

VALUEs
1 INT8 key-click-percent
1 INT8 bell-percent
2 INT16 bell-pitch
2 INT16 bell-duration
1 CARD8 led
1 led-mode

0 Off
1 On

1 KEYCODE key
1 auto-repeat-mode

X Window System Protocol
135 / 159

0 Off
1 On
2 Default

GetKeyboardControl
1 103 opcode
1 unused
2 1 request length

->
1 1 Reply
1 global-auto-repeat

0 Off
1 On

2 CARD16 sequence number
4 5 reply length
4 CARD32 led-mask
1 CARD8 key-click-percent
1 CARD8 bell-percent
2 CARD16 bell-pitch
2 CARD16 bell-duration
2 unused
32 LISTofCARD8 auto-repeats

Bell
1 104 opcode
1 INT8 percent
2 1 request length

ChangePointerControl
1 105 opcode
1 unused
2 3 request length
2 INT16 acceleration-numerator
2 INT16 acceleration-denominator
2 INT16 threshold
1 BOOL do-acceleration
1 BOOL do-threshold

GetPointerControl
1 106 opcode
1 unused
2 1 request length

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 acceleration-numerator
2 CARD16 acceleration-denominator
2 CARD16 threshold
18 unused

SetScreenSaver
1 107 opcode
1 unused

X Window System Protocol
136 / 159

2 3 request length
2 INT16 timeout
2 INT16 interval
1 prefer-blanking

0 No
1 Yes
2 Default

1 allow-exposures
0 No
1 Yes
2 Default

2 unused

GetScreenSaver
1 108 opcode
1 unused
2 1 request length

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 timeout
2 CARD16 interval
1 prefer-blanking

0 No
1 Yes

1 allow-exposures
0 No
1 Yes

18 unused

ChangeHosts
1 109 opcode
1 mode

0 Insert
1 Delete

2 2+(n+p)/4 request length
1 family

0 Internet
1 DECnet
2 Chaos

1 unused
2 n length of address
n LISTofCARD8 address
p unused, p=pad(n)

ListHosts
1 110 opcode
1 unused
2 1 request length

->
1 1 Reply
1 mode

0 Disabled

X Window System Protocol
137 / 159

1 Enabled
2 CARD16 sequence number
4 n/4 reply length
2 CARD16 number of HOSTs in hosts
22 unused
n LISTofHOST hosts (n always a multiple of 4)

SetAccessControl
1 111 opcode
1 mode

0 Disable
1 Enable

2 1 request length

SetCloseDownMode
1 112 opcode
1 mode

0 Destroy
1 RetainPermanent
2 RetainTemporary

2 1 request length

KillClient
1 113 opcode
1 unused
2 2 request length
4 CARD32 resource

0 AllTemporary

RotateProperties
1 114 opcode
1 unused
2 3+n request length
4 WINDOW window
2 n number of properties
2 INT16 delta
4n LISTofATOM properties

ForceScreenSaver
1 115 opcode
1 mode

0 Reset
1 Activate

2 1 request length

SetPointerMapping
1 116 opcode
1 n length of map
2 1+(n+p)/4 request length
n LISTofCARD8 map
p unused, p=pad(n)

->
1 1 Reply
1 status

0 Success
1 Busy

X Window System Protocol
138 / 159

2 CARD16 sequence number
4 0 reply length
24 unused

GetPointerMapping
1 117 opcode
1 unused
2 1 request length

->
1 1 Reply
1 n length of map
2 CARD16 sequence number
4 (n+p)/4 reply length
24 unused
n LISTofCARD8 map
p unused, p=pad(n)

SetModifierMapping
1 118 opcode
1 n keycodes-per-modifier
2 1+2n request length
8n LISTofKEYCODE keycodes

->
1 1 Reply
1 status

0 Success
1 Busy
2 Failed

2 CARD16 sequence number
4 0 reply length
24 unused

GetModifierMapping
1 119 opcode
1 unused
2 1 request length

->
1 1 Reply
1 n keycodes-per-modifier
2 CARD16 sequence number
4 2n reply length
24 unused
8n LISTofKEYCODE keycodes

NoOperation
1 127 opcode
1 unused
2 1+n request length
4n unused

X Window System Protocol
139 / 159

B.9 Events

KeyPress
1 2 code
1 KEYCODE detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

KeyRelease
1 3 code
1 KEYCODE detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

ButtonPress
1 4 code
1 BUTTON detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

ButtonRelease
1 5 code
1 BUTTON detail

X Window System Protocol
140 / 159

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

MotionNotify
1 6 code
1 detail

0 Normal
1 Hint

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

EnterNotify
1 7 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 mode

0 Normal
1 Grab
2 Ungrab

1 same-screen, focus

X Window System Protocol
141 / 159

#x01 focus (1 is True, 0 is False)
#x02 same-screen (1 is True, 0 is False)
#xFC unused

LeaveNotify
1 8 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 mode

0 Normal
1 Grab
2 Ungrab

1 same-screen, focus
#x01 focus (1 is True, 0 is False)
#x02 same-screen (1 is True, 0 is False)
#xFC unused

FocusIn
1 9 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual
5 Pointer
6 PointerRoot
7 None

2 CARD16 sequence number
4 WINDOW event
1 mode

0 Normal
1 Grab
2 Ungrab
3 WhileGrabbed

23 unused

FocusOut
1 10 code
1 detail

0 Ancestor
1 Virtual

X Window System Protocol
142 / 159

2 Inferior
3 Nonlinear
4 NonlinearVirtual
5 Pointer
6 PointerRoot
7 None

2 CARD16 sequence number
4 WINDOW event
1 mode

0 Normal
1 Grab
2 Ungrab
3 WhileGrabbed

23 unused

KeymapNotify
1 11 code
31 LISTofCARD8 keys (byte for keycodes 0-7 is

omitted)

Expose
1 12 code
1 unused
2 CARD16 sequence number
4 WINDOW window
2 CARD16 x
2 CARD16 y
2 CARD16 width
2 CARD16 height
2 CARD16 count
14 unused

GraphicsExposure
1 13 code
1 unused
2 CARD16 sequence number
4 DRAWABLE drawable
2 CARD16 x
2 CARD16 y
2 CARD16 width
2 CARD16 height
2 CARD16 minor-opcode
2 CARD16 count
1 CARD8 major-opcode
11 unused

NoExposure
1 14 code
1 unused
2 CARD16 sequence number
4 DRAWABLE drawable
2 CARD16 minor-opcode
1 CARD8 major-opcode
21 unused

VisibilityNotify
1 15 code

X Window System Protocol
143 / 159

1 unused
2 CARD16 sequence number
4 WINDOW window
1 state

0 Unobscured
1 PartiallyObscured
2 FullyObscured

23 unused

CreateNotify
1 16 code
1 unused
2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
1 BOOL override-redirect
9 unused

DestroyNotify
1 17 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
20 unused

UnmapNotify
1 18 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
1 BOOL from-configure
19 unused

MapNotify
1 19 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
1 BOOL override-redirect
19 unused

MapRequest
1 20 code
1 unused
2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
20 unused

X Window System Protocol
144 / 159

ReparentNotify
1 21 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
4 WINDOW parent
2 INT16 x
2 INT16 y
1 BOOL override-redirect
11 unused

ConfigureNotify
1 22 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
4 WINDOW above-sibling

0 None
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
1 BOOL override-redirect
5 unused

ConfigureRequest
1 23 code
1 stack-mode

0 Above
1 Below
2 TopIf
3 BottomIf
4 Opposite

2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
4 WINDOW sibling

0 None
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
2 BITMASK value-mask

#x0001 x
#x0002 y
#x0004 width
#x0008 height
#x0010 border-width
#x0020 sibling
#x0040 stack-mode

4 unused

GravityNotify

X Window System Protocol
145 / 159

1 24 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
2 INT16 x
2 INT16 y
16 unused

ResizeRequest
1 25 code
1 unused
2 CARD16 sequence number
4 WINDOW window
2 CARD16 width
2 CARD16 height
20 unused

CirculateNotify
1 26 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
4 WINDOW unused
1 place

0 Top
1 Bottom

15 unused

CirculateRequest
1 27 code
1 unused
2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
4 unused
1 place

0 Top
1 Bottom

15 unused

PropertyNotify
1 28 code
1 unused
2 CARD16 sequence number
4 WINDOW window
4 ATOM atom
4 TIMESTAMP time
1 state

0 NewValue
1 Deleted

15 unused

SelectionClear
1 29 code
1 unused

X Window System Protocol
146 / 159

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW owner
4 ATOM selection
16 unused

SelectionRequest
1 30 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time

0 CurrentTime
4 WINDOW owner
4 WINDOW requestor
4 ATOM selection
4 ATOM target
4 ATOM property

0 None
4 unused

SelectionNotify
1 31 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time

0 CurrentTime
4 WINDOW requestor
4 ATOM selection
4 ATOM target
4 ATOM property

0 None
8 unused

ColormapNotify
1 32 code
1 unused
2 CARD16 sequence number
4 WINDOW window
4 COLORMAP colormap

0 None
1 BOOL new
1 state

0 Uninstalled
1 Installed

18 unused

ClientMessage
1 33 code
1 CARD8 format
2 CARD16 sequence number
4 WINDOW window
4 ATOM type
20 data

MappingNotify
1 34 code
1 unused

X Window System Protocol
147 / 159

2 CARD16 sequence number
1 request

0 Modifier
1 Keyboard
2 Pointer

1 KEYCODE first-keycode
1 CARD8 count
25 unused

X Window System Protocol
148 / 159

Chapter 13

Glossary

Access control list

X maintains a list of hosts from which client programs can be run. By default, only programs on the local host and hosts
specified in an initial list read by the server can use the display. Clients on the local host can change this access control
list. Some server implementations can also implement other authorization mechanisms in addition to or in place of this
mechanism. The action of this mechanism can be conditional based on the authorization protocol name and data received
by the server at connection setup.

Active grab

A grab is active when the pointer or keyboard is actually owned by the single grabbing client.

Ancestors

If W is an inferior of A, then A is an ancestor of W.

Atom

An atom is a unique ID corresponding to a string name. Atoms are used to identify properties, types, and selections.

Background

An InputOutput window can have a background, which is defined as a pixmap. When regions of the window have their
contents lost or invalidated, the server will automatically tile those regions with the background.

Backing store

When a server maintains the contents of a window, the pixels saved off screen are known as a backing store.

Bit gravity

When a window is resized, the contents of the window are not necessarily discarded. It is possible to request that the server
relocate the previous contents to some region of the window (though no guarantees are made). This attraction of window
contents for some location of a window is known as bit gravity.

Bit plane

When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a bit plane or plane.

Bitmap

A bitmap is a pixmap of depth one.

Border

An InputOutput window can have a border of equal thickness on all four sides of the window. A pixmap defines the
contents of the border, and the server automatically maintains the contents of the border. Exposure events are never
generated for border regions.

X Window System Protocol
149 / 159

Button grabbing

Buttons on the pointer may be passively grabbed by a client. When the button is pressed, the pointer is then actively
grabbed by the client.

Byte order

For image (pixmap/bitmap) data, the server defines the byte order, and clients with different native byte ordering must
swap bytes as necessary. For all other parts of the protocol, the client defines the byte order, and the server swaps bytes as
necessary.

Children

The children of a window are its first-level subwindows.

Client

An application program connects to the window system server by some interprocess communication path, such as a TCP
connection or a shared memory buffer. This program is referred to as a client of the window system server. More precisely,
the client is the communication path itself; a program with multiple paths open to the server is viewed as multiple clients
by the protocol. Resource lifetimes are controlled by connection lifetimes, not by program lifetimes.

Clipping region

In a graphics context, a bitmap or list of rectangles can be specified to restrict output to a particular region of the window.
The image defined by the bitmap or rectangles is called a clipping region.

Colormap

A colormap consists of a set of entries defining color values. The colormap associated with a window is used to display
the contents of the window; each pixel value indexes the colormap to produce RGB values that drive the guns of a monitor.
Depending on hardware limitations, one or more colormaps may be installed at one time, so that windows associated with
those maps display with correct colors.

Connection

The interprocess communication path between the server and client program is known as a connection. A client program
typically (but not necessarily) has one connection to the server over which requests and events are sent.

Containment

A window ‘contains’ the pointer if the window is viewable and the hotspot of the cursor is within a visible region of
the window or a visible region of one of its inferiors. The border of the window is included as part of the window for
containment. The pointer is ‘in’ a window if the window contains the pointer but no inferior contains the pointer.

Coordinate system

The coordinate system has the X axis horizontal and the Y axis vertical, with the origin [0, 0] at the upper left. Coordinates
are integral, in terms of pixels, and coincide with pixel centers. Each window and pixmap has its own coordinate system.
For a window, the origin is inside the border at the inside upper left.

Cursor

A cursor is the visible shape of the pointer on a screen. It consists of a hot spot, a source bitmap, a shape bitmap, and a
pair of colors. The cursor defined for a window controls the visible appearance when the pointer is in that window.

Depth

The depth of a window or pixmap is the number of bits per pixel that it has. The depth of a graphics context is the depth of
the drawables it can be used in conjunction with for graphics output.

Device

Keyboards, mice, tablets, track-balls, button boxes, and so on are all collectively known as input devices. The core protocol
only deals with two devices, ‘the keyboard’ and ‘the pointer.’

X Window System Protocol
150 / 159

DirectColor

DirectColor is a class of colormap in which a pixel value is decomposed into three separate subfields for indexing. The
first subfield indexes an array to produce red intensity values. The second subfield indexes a second array to produce blue
intensity values. The third subfield indexes a third array to produce green intensity values. The RGB values can be changed
dynamically.

Display

A server, together with its screens and input devices, is called a display.

Drawable

Both windows and pixmaps can be used as sources and destinations in graphics operations. These windows and pixmaps
are collectively known as drawables. However, an InputOnly window cannot be used as a source or destination in a
graphics operation.

Event

Clients are informed of information asynchronously by means of events. These events can be generated either asyn-
chronously from devices or as side effects of client requests. Events are grouped into types. The server never sends events
to a client unless the client has specificially asked to be informed of that type of event. However, other clients can force
events to be sent to other clients. Events are typically reported relative to a window.

Event mask

Events are requested relative to a window. The set of event types that a client requests relative to a window is described by
using an event mask.

Event synchronization

There are certain race conditions possible when demultiplexing device events to clients (in particular deciding where
pointer and keyboard events should be sent when in the middle of window management operations). The event synchro-
nization mechanism allows synchronous processing of device events.

Event propagation

Device-related events propagate from the source window to ancestor windows until some client has expressed interest in
handling that type of event or until the event is discarded explicitly.

Event source

The window the pointer is in is the source of a device-related event.

Exposure event

Servers do not guarantee to preserve the contents of windows when windows are obscured or reconfigured. Exposure
events are sent to clients to inform them when contents of regions of windows have been lost.

Extension

Named extensions to the core protocol can be defined to extend the system. Extension to output requests, resources, and
event types are all possible and are expected.

Focus window

The focus window is another term for the input focus.

Font

A font is a matrix of glyphs (typically characters). The protocol does no translation or interpretation of character sets. The
client simply indicates values used to index the glyph array. A font contains additional metric information to determine
interglyph and interline spacing.

GC, GContext
GC and gcontext are abbreviations for graphics context.

Glyph

A glyph is an image, typically of a character, in a font.

X Window System Protocol
151 / 159

Grab

Keyboard keys, the keyboard, pointer buttons, the pointer, and the server can be grabbed for exclusive use by a client. In
general, these facilities are not intended to be used by normal applications but are intended for various input and window
managers to implement various styles of user interfaces.

Graphics context

Various information for graphics output is stored in a graphics context such as foreground pixel, background pixel, line
width, clipping region, and so on. A graphics context can only be used with drawables that have the same root and the
same depth as the graphics context.

Gravity

See bit gravity and window gravity.

GrayScale

GrayScale can be viewed as a degenerate case of PseudoColor , in which the red, green, and blue values in any given
colormap entry are equal, thus producing shades of gray. The gray values can be changed dynamically.

Hotspot

A cursor has an associated hotspot that defines the point in the cursor corresponding to the coordinates reported for the
pointer.

Identifier

An identifier is a unique value associated with a resource that clients use to name that resource. The identifier can be used
over any connection.

Inferiors

The inferiors of a window are all of the subwindows nested below it: the children, the children’s children, and so on.

Input focus

The input focus is normally a window defining the scope for processing of keyboard input. If a generated keyboard event
would normally be reported to this window or one of its inferiors, the event is reported normally. Otherwise, the event
is reported with respect to the focus window. The input focus also can be set such that all keyboard events are discarded
and such that the focus window is dynamically taken to be the root window of whatever screen the pointer is on at each
keyboard event.

Input manager

Control over keyboard input is typically provided by an input manager client.

InputOnly window

An InputOnly window is a window that cannot be used for graphics requests. InputOnly windows are invisible and
can be used to control such things as cursors, input event generation, and grabbing. InputOnly windows cannot have
InputOutput windows as inferiors.

InputOutput window

An InputOutput window is the normal kind of opaque window, used for both input and output. InputOutput windows
can have both InputOutput and InputOnly windows as inferiors.

Key grabbing

Keys on the keyboard can be passively grabbed by a client. When the key is pressed, the keyboard is then actively grabbed
by the client.

Keyboard grabbing

A client can actively grab control of the keyboard, and key events will be sent to that client rather than the client the events
would normally have been sent to.

Keysym

An encoding of a symbol on a keycap on a keyboard.

X Window System Protocol
152 / 159

Mapped

A window is said to be mapped if a map call has been performed on it. Unmapped windows and their inferiors are never
viewable or visible.

Modifier keys

Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple, CapsLock, ShiftLock, and similar keys are called modifier keys.

Monochrome

Monochrome is a special case of StaticGray in which there are only two colormap entries.

Obscure

A window is obscured if some other window obscures it. Window A obscures window B if both are viewable InputOutput
windows, A is higher in the global stacking order, and the rectangle defined by the outside edges of A intersects the
rectangle defined by the outside edges of B. Note the distinction between obscure and occludes. Also note that window
borders are included in the calculation and that a window can be obscured and yet still have visible regions.

Occlude

A window is occluded if some other window occludes it. Window A occludes window B if both are mapped, A is higher
in the global stacking order, and the rectangle defined by the outside edges of A intersects the rectangle defined by the
outside edges of B. Note the distinction between occludes and obscures. Also note that window borders are included in the
calculation.

Padding

Some padding bytes are inserted in the data stream to maintain alignment of the protocol requests on natural boundaries.
This increases ease of portability to some machine architectures.

Parent window

If C is a child of P, then P is the parent of C.

Passive grab

Grabbing a key or button is a passive grab. The grab activates when the key or button is actually pressed.

Pixel value

A pixel is an N-bit value, where N is the number of bit planes used in a particular window or pixmap (that is, N is the depth
of the window or pixmap). For a window, a pixel value indexes a colormap to derive an actual color to be displayed.

Pixmap

A pixmap is a three-dimensional array of bits. A pixmap is normally thought of as a two-dimensional array of pixels,
where each pixel can be a value from 0 to (2ˆN)-1 and where N is the depth (z axis) of the pixmap. A pixmap can also be
thought of as a stack of N bitmaps.

Plane

When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a plane or bit plane.

Plane mask

Graphics operations can be restricted to only affect a subset of bit planes of a destination. A plane mask is a bit mask
describing which planes are to be modified. The plane mask is stored in a graphics context.

Pointer

The pointer is the pointing device attached to the cursor and tracked on the screens.

Pointer grabbing

A client can actively grab control of the pointer. Then button and motion events will be sent to that client rather than the
client the events would normally have been sent to.

Pointing device

A pointing device is typically a mouse, tablet, or some other device with effective dimensional motion. There is only one
visible cursor defined by the core protocol, and it tracks whatever pointing device is attached as the pointer.

X Window System Protocol
153 / 159

Property

Windows may have associated properties, which consist of a name, a type, a data format, and some data. The protocol
places no interpretation on properties. They are intended as a general-purpose naming mechanism for clients. For example,
clients might use properties to share information such as resize hints, program names, and icon formats with a window
manager.

Property list

The property list of a window is the list of properties that have been defined for the window.

PseudoColor

PseudoColor is a class of colormap in which a pixel value indexes the colormap to produce independent red, green,
and blue values; that is, the colormap is viewed as an array of triples (RGB values). The RGB values can be changed
dynamically.

Redirecting control

Window managers (or client programs) may want to enforce window layout policy in various ways. When a client attempts
to change the size or position of a window, the operation may be redirected to a specified client rather than the operation
actually being performed.

Reply

Information requested by a client program is sent back to the client with a reply. Both events and replies are multiplexed
on the same connection. Most requests do not generate replies, although some requests generate multiple replies.

Request

A command to the server is called a request. It is a single block of data sent over a connection.

Resource

Windows, pixmaps, cursors, fonts, graphics contexts, and colormaps are known as resources. They all have unique iden-
tifiers associated with them for naming purposes. The lifetime of a resource usually is bounded by the lifetime of the
connection over which the resource was created.

RGB values

Red, green, and blue (RGB) intensity values are used to define color. These values are always represented as 16-bit
unsigned numbers, with 0 being the minimum intensity and 65535 being the maximum intensity. The server scales the
values to match the display hardware.

Root

The root of a pixmap, colormap, or graphics context is the same as the root of whatever drawable was used when the
pixmap, colormap, or graphics context was created. The root of a window is the root window under which the window was
created.

Root window

Each screen has a root window covering it. It cannot be reconfigured or unmapped, but it otherwise acts as a full-fledged
window. A root window has no parent.

Save set

The save set of a client is a list of other clients’ windows that, if they are inferiors of one of the client’s windows at
connection close, should not be destroyed and that should be remapped if currently unmapped. Save sets are typically used
by window managers to avoid lost windows if the manager terminates abnormally.

Scanline

A scanline is a list of pixel or bit values viewed as a horizontal row (all values having the same y coordinate) of an image,
with the values ordered by increasing x coordinate.

Scanline order

An image represented in scanline order contains scanlines ordered by increasing y coordinate.

X Window System Protocol
154 / 159

Screen

A server can provide several independent screens, which typically have physically independent monitors. This would be
the expected configuration when there is only a single keyboard and pointer shared among the screens.

Selection

A selection can be thought of as an indirect property with dynamic type; that is, rather than having the property stored in
the server, it is maintained by some client (the ‘owner’). A selection is global in nature and is thought of as belonging to
the user (although maintained by clients), rather than as being private to a particular window subhierarchy or a particular
set of clients. When a client asks for the contents of a selection, it specifies a selection ‘target type’. This target type can be
used to control the transmitted representation of the contents. For example, if the selection is ‘the last thing the user clicked
on’ and that is currently an image, then the target type might specify whether the contents of the image should be sent in
XY format or Z format. The target type can also be used to control the class of contents transmitted; for example, asking
for the ‘looks’ (fonts, line spacing, indentation, and so on) of a paragraph selection rather than the text of the paragraph.
The target type can also be used for other purposes. The protocol does not constrain the semantics.

Server

The server provides the basic windowing mechanism. It handles connections from clients, multiplexes graphics requests
onto the screens, and demultiplexes input back to the appropriate clients.

Server grabbing

The server can be grabbed by a single client for exclusive use. This prevents processing of any requests from other client
connections until the grab is completed. This is typically only a transient state for such things as rubber-banding, pop-up
menus, or to execute requests indivisibly.

Sibling

Children of the same parent window are known as sibling windows.

Stacking order

Sibling windows may stack on top of each other. Windows above other windows both obscure and occlude those lower
windows. This is similar to paper on a desk. The relationship between sibling windows is known as the stacking order.

StaticColor

StaticColor can be viewed as a degenerate case of PseudoColor in which the RGB values are predefined and read-only.

StaticGray

StaticGray can be viewed as a degenerate case of GrayScale in which the gray values are predefined and read-only. The
values are typically linear or near-linear increasing ramps.

Stipple

A stipple pattern is a bitmap that is used to tile a region that will serve as an additional clip mask for a fill operation with
the foreground color.

String Equivalence

Two ISO Latin-1 STRING8 values are considered equal if they are the same length and if corresponding bytes are either
equal or are equivalent as follows: decimal values 65 to 90 inclusive (characters ‘A’ to ‘Z’) are pairwise equivalent to
decimal values 97 to 122 inclusive (characters ‘a’ to ‘z’), decimal values 192 to 214 inclusive (characters ‘A grave’ to
‘O diaeresis’) are pairwise equivalent to decimal values 224 to 246 inclusive (characters ‘a grave’ to ‘o diaeresis’), and
decimal values 216 to 222 inclusive (characters ‘O oblique’ to ‘THORN’) are pairwise equivalent to decimal values 246 to
254 inclusive (characters ‘o oblique’ to ‘thorn’).

Tile

A pixmap can be replicated in two dimensions to tile a region. The pixmap itself is also known as a tile.

Timestamp

A timestamp is a time value, expressed in milliseconds. It typically is the time since the last server reset. Timestamp values
wrap around (after about 49.7 days). The server, given its current time is represented by timestamp T, always interprets
timestamps from clients by treating half of the timestamp space as being earlier in time than T and half of the timestamp
space as being later in time than T. One timestamp value (named CurrentTime) is never generated by the server. This
value is reserved for use in requests to represent the current server time.

X Window System Protocol
155 / 159

TrueColor

TrueColor can be viewed as a degenerate case of DirectColor in which the subfields in the pixel value directly encode the
corresponding RGB values; that is, the colormap has predefined read-only RGB values. The values are typically linear or
near-linear increasing ramps.

Type

A type is an arbitrary atom used to identify the interpretation of property data. Types are completely uninterpreted by the
server and are solely for the benefit of clients.

Viewable

A window is viewable if it and all of its ancestors are mapped. This does not imply that any portion of the window is
actually visible. Graphics requests can be performed on a window when it is not viewable, but output will not be retained
unless the server is maintaining backing store.

Visible

A region of a window is visible if someone looking at the screen can actually see it; that is, the window is viewable and
the region is not occluded by any other window.

Window gravity

When windows are resized, subwindows may be repositioned automatically relative to some position in the window. This
attraction of a subwindow to some part of its parent is known as window gravity.

Window manager

Manipulation of windows on the screen and much of the user interface (policy) is typically provided by a window manager
client.

XYFormat

The data for a pixmap is said to be in XY format if it is organized as a set of bitmaps representing individual bit planes,
with the planes appearing from most-significant to least-significant in bit order.

ZFormat

The data for a pixmap is said to be in Z format if it is organized as a set of pixel values in scanline order.

X Window System Protocol
156 / 159

Chapter 14

Index

A
Access control list, 148
Active grab, 148
AllocColor, 50
AllocColorCells, 50
AllocColorPlanes, 51
AllocNamedColor, 50
AllowEvents, 29
Ancestors, 148
Atom, 148

B
Background, 148
Backing store, 148
Bell, 57
Bitmap, 148
Border, 148
ButtonPress, 62
ButtonRelease, 62
Byte order, 149

C
ChangeActivePointerGrab, 27
ChangeGC, 40
ChangeHosts, 58
ChangeKeyboardControl, 56
ChangeKeyboardMapping, 55
ChangePointerControl, 57
ChangeProperty, 23
ChangeSaveSet, 19
ChangeWindowAttributes, 17
Children, 149
CirculateNotify, 70
CirculateRequest, 70
CirculateWindow, 22
ClearArea, 41
Client, 149
ClientMessage, 71
Clipping region, 149
CloseFont, 32
ColormapNotify, 71
ConfigureNotify, 69
ConfigureRequest, 69

ConfigureWindow, 20
Connection, 149
Containment, 149
ConvertSelection, 25
Coordinate system, 149
CopyArea, 42
CopyColormapAndFree, 49
CopyGC, 40
CopyPlane, 42
CreateColormap, 48
CreateCursor, 52
CreateGC, 35
CreateGlyphCursor, 53
CreateNotify, 68
CreatePixmap, 35
CreateWindow, 15
Cursor, 149

D
DeleteProperty, 23
Depth, 149
DestroyNotify, 68
DestroySubwindows, 19
DestroyWindow, 19
Device, 149
DirectColor, 150
Display, 150
Drawable, 150

E
EnterNotify, 63
Error Codes

Access, 5
Alloc, 5
Atom, 5
Colormap, 5
Cursor, 5
Drawable, 5
Font, 5
GContext, 5
IDChoice, 5
Implementation, 5
Length, 5

X Window System Protocol
157 / 159

Match, 6
Name, 6
Pixmap, 6
Request, 6
Value, 6
Window, 6

Event, 150
Expose, 67
Extension, 150

F
FillPoly, 45
FocusIn, 64
FocusOut, 64
Font, 150
ForceScreenSaver, 58
FreeColormap, 49
FreeColors, 51
FreeCursor, 53
FreeGC, 41
FreePixmap, 35

G
GC, 150
GContext, 150
GetAtomName, 23
GetFontPath, 35
GetGeometry, 22
GetImage, 47
GetInputFocus, 32
GetKeyboardControl, 56
GetKeyboardMapping, 55
GetModifierMapping, 55
GetMotionEvents, 31
GetPointerControl, 58
GetPointerMapping, 57
GetProperty, 24
GetScreenSaver, 58
GetSelectionOwner, 25
GetWindowAttributes, 18
Glyph, 150
Grab, 151
GrabButton, 27
GrabKey, 28
GrabKeyboard, 28
GrabPointer, 26
GrabServer, 30
Graphics context, 151
GraphicsExposure, 67
Gravity, 151
GravityNotify, 69
GrayScale, 151

H
Hotspot, 151

I

Identifier, 151
ImageText16, 48
ImageText8, 48
Inferiors, 151
Input focus, 151
Input manager, 151
InstallColormap, 49
InternAtom, 23

K
KeymapNotify, 66
KeyPress, 62
KeyRelease, 62
Keysym, 151
KillClient, 60

L
LeaveNotify, 63
ListExtensions, 54
ListFonts, 34
ListFontsWithInfo, 34
ListHosts, 59
ListInstalledColormaps, 50
ListProperties, 24
LookupColor, 52

M
MapNotify, 68
Mapped window, 152
MappingNotify, 71
MapRequest, 69
MapSubwindows, 20
MapWindow, 19
Modifier keys, 152
Monochrome, 152
MotionNotify, 62

N
NoExposure, 67
NoOperation, 60

O
Obscure, 152
Occlude, 152
OpenFont, 32

P
Padding, 152
Passive grab, 152
Pixel value, 152
Pixmap, 152
Plane, 152
Pointer, 152
Pointing device, 152
PolyArc, 44
PolyFillArc, 46
PolyFillRectangle, 45
PolyLine, 43

X Window System Protocol
158 / 159

PolyPoint, 42
PolyRectangle, 43
PolySegment, 43
PolyText16, 48
PolyText8, 47
Property, 153
Property list, 153
PropertyNotify, 70
PseudoColor, 153
PutImage, 46

Q
QueryBestSize, 54
QueryColors, 52
QueryExtension, 54
QueryFont, 33
QueryKeymap, 32
QueryPointer, 30
QueryTextExtents, 34
QueryTree, 22

R
RecolorCursor, 53
Redirecting control, 153
ReparentNotify, 69
ReparentWindow, 19
Reply, 153
Request, 153
ResizeRequest, 69
Resource, 153
RGB values, 153
Root, 153
RotateProperties, 24

S
Save set, 153
Scanline, 153
Scanline order, 153
Screen, 154
Selection, 154
SelectionClear, 70
SelectionNotify, 71
SelectionRequest, 70
SendEvent, 25
Server, 154
SetAccessControl, 59
SetClipRectangles, 41
SetCloseDownMode, 59
SetDashes, 40
SetFontPath, 35
SetInputFocus, 31
SetModifierMapping, 54
SetPointerMapping, 57
SetScreenSaver, 58
SetSelectionOwner, 24
Sibling, 154
Stacking order, 154

StaticColor, 154
StaticGray, 154
Stipple, 154
StoreColors, 51
StoreNamedColor, 52
String Equivalence, 154

T
Tile, 154
Timestamp, 154
TranslateCoordinates, 31
TrueColor, 155
Type, 155
Types

ARC, 4
ATOM, 3
BITGRAVITY, 4
BITMASK, 3
BOOL, 4
BUTMASK, 4
BUTTON, 4
BYTE, 3
CARD16, 3
CARD32, 3
CARD8, 3
CHAR2B, 4
COLORMAP, 3
CURSOR, 3
DEVICEEVENT, 4
DRAWABLE, 3
EVENT, 4
FONT, 3
FONTABLE, 3
GCONTEXT, 3
HOST, 4
INT16, 3
INT32, 3
INT8, 3
KEYBUTMASK, 4
KEYCODE, 4
KEYMASK, 4
KEYSYM, 4
LISTofFOO, 3
LISTofVALUE, 3
OR, 3
PIXMAP, 3
POINT, 4
POINTEREVENT, 4
RECTANGLE, 4
STRING16, 4
STRING8, 4
TIMESTAMP, 3
VALUE, 3
VISUALID, 3
WINDOW, 3
WINGRAVITY, 4

X Window System Protocol
159 / 159

U
UngrabButton, 27
UngrabKey, 29
UngrabKeyboard, 28
UngrabPointer, 26
UngrabServer, 30
UninstallColormap, 50
UnmapNotify, 68
UnmapSubwindows, 20
UnmapWindow, 20

V
Viewable, 155
VisibilityNotify, 68
Visible, 155

W
WarpPointer, 31

X
XYFormat, 155

Z
ZFormat, 155

	Protocol Formats
	Syntactic Conventions
	Common Types
	Errors
	Keyboards
	Pointers
	Predefined Atoms
	Connection Setup
	Requests
	Connection Close
	Events
	Flow Control and Concurrency
	KEYSYM Encoding
	Special KEYSYMs
	Latin-1 KEYSYMs
	Unicode KEYSYMs
	Function KEYSYMs
	Vendor KEYSYMs
	Legacy KEYSYMs

	Protocol Encoding
	Syntactic Conventions
	Common Types
	Errors
	Keyboards
	Pointers
	Predefined Atoms
	Connection Setup
	Requests
	Events

	Glossary
	Index

