X Transport Interface

X Transport Interface

X Consortium Standard

X Transport Interface

Copyright © 1993, 1994 NCR Corporation - Dayton, Ohio, USA
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name NCR not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. NCR makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

NCR DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL NCR BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1993, 1994, 2002 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Software without prior written authorization from The Open Group.

X Window System is a trademark of The Open Group, Inc.

X Transport Interface

Contents

1 Purposes and Goals
2 Overview of the Interface
3 Definition of Address Specification Format

4 Internal Data Structures
4.1 XEransSport e e e e e
4.2 XtransConnInfo L e e e

5 Exposed Transport Independent API
5.1 Corelnterface APL o e e e e e
5.2 Utility APL . . .

6 Transport Option Definition

7 Hidden Transport Dependent API
8 Configuration

9 Transport Specific Definitions

10 Implementation Notes

10

11

13

14

15

X Transport Interface

The X Transport Interface

Designed by Stuart Anderson (NCR) with help from Ralph Mor (X Consortium)

Note
This documentation does not completely match the implementation in R6 (as a result of some late changes made in the code).
Specifically, support was added for font server cloning, and conditional compliation was introduced for client vs. server code.

X Transport Interface
1/16

Chapter 1

Purposes and Goals

The X Transport Interface is intended to combine all system and transport specific code into a single place in the source tree.
This API should be used by all libraries, clients and servers of the X Window System. Use of this API should allow the addition
of new types of transports and support for new platforms without making any changes to the source except in the X Transport
Interface code.

This interface should solve the problem of multiple #ifdef TRANSPORT and #ifdef PLATFORM statements scattered
throughout the source tree.

This interface should provide enough functionality to support all types of protocols, including connection oriented protocols such
as X11 and FS, and connection-less oriented protocols such as XDMCP.

X Transport Interface
2/16

Chapter 2

Overview of the Interface

The interface provides an API for use by applications. The functions in this API perform work that is common to all transports
and systems, such as parsing an address into a host and port number. The functions in this API call transport specific functions
that are contained in a table whose contents are defined at compile time. This table contains an entry for each type of transport.
Each entry is a record containing mostly pointers to function that implements the interface for the given transport.

This API does not provide an abstraction for select () or poll (). These functions are themselves transport independent, so
an additional interface is not needed for these functions. It is also unclear how such an interface would affect performance.

X Transport Interface
3/16

Chapter 3

Definition of Address Specification Format

Addresses are specified in the following syntax,
protocol/host:port

where protocol specifies a protocol family or an alias for a protocol family. A definition of common protocol families is given
in a later section.

The host part specifies the name of a host or other transport dependent entity that could be interpreted as a Network Service
Access Point (NSAP).

The port part specifies the name of a Transport Service Access Point (TSAP). The format of the TSAP is defined by the
underlying transport implementation, but it is represented using a string format when it is part of an address.

X Transport Interface
4/16

Chapter 4

Internal Data Structures

There are two major data structures associated with the transport independent portion of this interface. Additional data structures
may be used internally by each transport.

4.1 Xtransport

Each transport supported has an entry in the transport table. The transport table is an array of Xtransport records. Each record
contains all the entry points for a single transport. This record is defined as:

typedef struct _Xtransport ({

char *TransName;
int flags;

XtransConnInfo (xOpenCOTSClient) (

struct _Xtransport =, /* transport =/
char *, /* protocol =*/

char x, /* host x/

char * /% port x/

)i

XtransConnInfo (*xOpenCOTSServer) (

struct _Xtransport =, /* transport =*/
char x, /* protocol x/

char x, /% host %/

char = /* port =/

)i

XtransConnInfo (xOpenCLTSClient) (

struct _Xtransport x, /* transport =/
char «, /* protocol =/

char =, /* host */

char = /* port =/

)

XtransConnInfo (*xOpenCLTSServer) (
struct _Xtransport =, /* transport =/
char =, /* protocol =*/
char =, /* host =*/

X Transport Interface

5/16

char = /* port */

) i

int (*SetOption) (

XtransConnInfo, /% connection =x/
int, /* option */

int /* arg =/

)

int (#CreatelListener) (

XtransConnInfo, /* connection =x/
char =*, /* port «/

int /+ flags =/

)

int (*ResetListener) (

XtransConnInfo /+ connection =/

)

XtransConnInfo (xAccept) (

XtransConnInfo /+ connection =%/
)i

int (xConnect) (

XtransConnInfo, /% connection x/
char =, /* host =/

char = /* port =/

)i

int (xBytesReadable) (

XtransConnInfo, /% connection x/
BytesReadable_t = /* pend x/

)i

int (*Read) (

XtransConnInfo, /% connection */
char =x, /x buf */

int /* size x/

)i

int (xWrite) (

XtransConnInfo, /% connection x/
char «, /* buf x/

int /* size =/

)

int (xReadv) (

XtransConnInfo, /% connection =x/
struct iovec =x, /* buf =/

int /* size =/

)

int (xWritev) (

XtransConnInfo, /% connection =x/

struct iovec x,
int / *
)

/* buf =/
size «/

X Transport Interface
6/16

int (#Disconnect) (

XtransConnInfo /* connection =/
)i

int (xClose) (

XtransConnInfo /* connection =/

)i
} Xtransport;
The flags field can contain an OR of the following masks:

TRANS_ALIAS indicates that this record is providing an alias, and should not be used to create a listener.
TRANS_LOCAL indicates that this is a LOCALCONN transport.

TRANS_ABSTRACT indicates that a local connection transport uses the abstract socket namespace.
Some additional flags may be set in the r1ags field by the library while it is running:

TRANS_DISABLED indicates that this transport has been disabled.
TRANS_NOLISTEN indicates that servers should not open new listeners using this transport.

TRANS_NOUNLINK set by a transport backend to indicate that the endpoints for its connection should not be unlinked.

4.2 XtransConninfo

Each connection will have an opaque XtransConnlnfo transport connection object allocated for it. This record contains informa-
tion specific to the connection. The record is defined as:

typedef struct _XtransConnInfo xXtransConnInfo;

struct _XtransConnInfo {

struct _Xtransport *transptr;
char *priv;

int flags;

int fd;

int family;

char *addr;

int addrlen;

char *peeraddr;

int peeraddrlen;
}i

X Transport Interface
7/16

Chapter 5

Exposed Transport Independent API

This API is included in each library and server that uses it. The API may be used by the library, but it is not added to the public
API for that library. This interface is simply an implementation facilitator. This API contains a low level set of core primitives,
and a few utility functions that are built on top of the primitives. The utility functions exist to provide a more familiar interface
that can be used to port existing code.

A macro is defined in Xtrans.h for TRANS(func) that creates a unique function name depending on where the code is compiled.
For example, when built for Xlib, TRANS(OpenCOTSClient) becomes _X11TransOpenCOTSClient.

All failures are considered fatal, and the connection should be closed and re-established if desired. In most cases, however, the
value of errno will be available for debugging purposes.

5.1 Core Interface API

* XtransConnlnfo TRANS(OpenCOTSClient)(char *address)

This function creates a Connection-Oriented Transport that is suitable for use by a client. The parameter address contains
the full address of the server to which this endpoint will be connected. This functions returns an opaque transport connection
object on success, or NULL on failure.

* XtransConnlnfo TRANS(OpenCOTSServer)(char *address)

This function creates a Connection-Oriented Transport that is suitable for use by a server. The parameter address contains
the full address to which this server will be bound. This functions returns an opaque transport connection object on success, or
NULL on failure.

¢ XtransConnlnfo TRANS(OpenCLTSClient)(char *address)

This function creates a Connection-Less Transport that is suitable for use by a client. The parameter address contains the full
address of the server to which this endpoint will be connected. This functions returns an opaque transport connection object
on success, or NULL on failure.

» XtransConnlnfo TRANS(OpenCLTSServer)(char *address)

This function creates a Connection-Less Transport that is suitable for use by a server. The parameter address contains the
full address to which this server will be bound. This functions returns an opaque transport connection object on success, or
NULL on failure.

* int TRANS(SetOption)(XtransConnlnfo connection, int option, int arg)

This function sets transport options, similar to the way set sockopt () and ioctl () work. The parameter connection
is an endpoint that was obtained from _XTransOpen*() functions. The parameter opt ion contains the option that will be set.
The actual values for option are defined in a later section. The parameter arg can be used to pass in an additional value that
may be required by some options. This function return 0 on success and -1 on failure.

X Transport Interface
8/16

Note
Based on current usage, the complimentary function TRANS (GetOption) is not necessary.

int TRANS(CreateListener)(XtransConnlInfo connection, char *port, int flags)

This function sets up the server endpoint for listening. The parameter connection is an endpoint that was obtained from
TRANS (OpenCOTSServer) () or TRANS (OpenCLTSServer) (). The parameter port specifies the port to which this
endpoint should be bound for listening. If port is NULL, then the transport may attempt to allocate any available TSAP for
this connection. If the transport cannot support this, then this function will return a failure. The f1ags parameter can be set to
ADDR_IN_USE_ALLOWED to allow the call to the underlying binding function to fail with a EADDRINUSE error without
causing the TRANS (CreateListener) function itself to fail. This function return O on success and -1 on failure.

int TRANS(ResetListener)(XtransConnlnfo connection)

When a server is restarted, certain listen ports may need to be reset. For example, unix domain needs to check that the file
used for communication has not been deleted. If it has, it must be recreated. The parameter connection is an opened
and bound endpoint that was obtained from TRANS (OpenCOTSServer) () and passed to TRANS (CreateListen-—
er) (). This function will return one of the following values: TRANS_RESET_NOOP, TRANS_RESET _NEW_FD, or
TRANS_RESET_FAILURE.

XtransConnlnfo TRANS(Accept)(XtransConnlnfo connection)

Once a connection indication is received, this function can be called to accept the connection. The parameter connection is
an opened and bound endpoint that was obtained from TRANS (OpenCOTSServer) () and passed to TRANS (CreateL—
istener) (). This function will return a new opaque transport connection object upon success, NULL otherwise.

int TRANS(Connect)(XtransConnInfo connection, char *address)

This function creates a connection to a server. The parameter connection is an endpoint that was obtained from TRANS (O-
penCOTSClient) (). The parameter address specifies the TSAP to which this endpoint should connect. If the protocol is
included in the address, it will be ignored. This function return O on success and -1 on failure.

int TRANS(BytesReadable)(XtransConnlnfo connection, BytesReadable_t *pend);

This function provides the same functionality as the BytesReadable macro.

int TRANS(Read)(XtransConnlnfo connection, char *buf, int size)

This function will return the number of bytes requested on a COTS connection, and will return the minimum of the number
bytes requested or the size of the incoming packet on a CLTS connection.

int TRANS(Write)(XtransConnInfo connection, char *buf, int size)

This function will write the requested number of bytes on a COTS connection, and will send a packet of the requested size on
a CLTS connection.

int TRANS(Readv)(XtransConnlnfo connection, struct iovec *buf, int size)

Similar to TRANS (Read) ().

int TRANS(Writev)(XtransConnlnfo connection, struct iovec *buf, int size)

Similar to TRANS (Write) ().

int TRANS(Disconnect)(XtransConnInfo connection)

This function is used when an orderly disconnect is desired. This function breaks the connection on the transport. It is similar
to the socket function shutdown ().

int TRANS(Close)(XtransConnlnfo connection)

This function closes the transport, unbinds it, and frees all resources that was associated with the transport. If a TRANS (D1i-
sconnect) call was not made on the connection, a disorderly disconnect may occur.

int TRANS(IsLocal)(XtransConnInfo connection)
Returns TRUE if it is a local transport.

X Transport Interface
9/16

int TRANS(GetMyAddr)(XtransConnlInfo connection, int *familyp, int *addrlenp, Xtransaddr **addrp)

This function is similar to get sockname (). This function will allocate space for the address, so it must be freed by the
caller. Not all transports will have a valid address until a connection is established. This function should not be used until the
connection is established with Connect () or Accept ().

int TRANS(GetPeerAddr)(XtransConnInfo connection, int *familyp, int *addrlenp, Xtransaddr **addrp)

This function is similar to getpeername (). This function will allocate space for the address, so it must be freed by the
caller. Not all transports will have a valid address until a connection is established. This function should not be used until the
connection is established with Connect () or Accept ().

int TRANS(GetConnectionNumber)(XtransConnInfo connection)

Returns the file descriptor associated with this transport.

int TRANS(MakeAlICOTSServerListeners)(char *port, int *partial_ret, int *count_ret, XtransConnInfo **connections_ret)
This function should be used by most servers. It will try to establish a COTS server endpoint for each transport listed in the
transport table. partial_ret will be set to True if only a partial network could be created. count_ ret is the number of
transports returned, and connections_ret is the list of transports.

int TRANS(MakeAllICLTSServerListeners)(char *port, int *partial_ret, int *count_ret, XtransConnInfo **connections_ret)

This function should be used by most servers. It will try to establish a CLTS server endpoint for each transport listed in the
transport table. partial ret will be set to True if only a partial network could be created. count_ret is the number of
transports returned, and connections_ret is the list of transports.

5.2 Utility API

This section describes a few useful functions that have been implemented on top of the Core Interface API. These functions are
being provided as a convenience.

* int TRANS(ConvertAddress)(int *familyp, int *addrlenp, Xtransaddr *addrp)

This function converts a sockaddr based address to an X authorization based address (ie AF_INET, AF_UNIX to the X protocol
definition (ie FamilylInternet, FamilyLocal)).

X Transport Interface
10/ 16

Chapter 6

Transport Option Definition

The following options are defined for the TRANS (SetOption) () function. If an OS or transport does not support any of these
options, then it will silently ignore the option.

* TRANS_NONBLOCKING
This option controls the blocking mode of the connection. If the argument is set to 1, then the connection will be set to blocking.
If the argument is set to 0, then the connection will be set to non- blocking.

* TRANS_CLOSEONEXEC

This option determines what will happen to the connection when an exec is encountered. If the argument is set to 1, then the
connection will be closed when an exec occurs. If the argument is set to 0, then the connection will not be closed when an exec
occurs.

X Transport Interface
11/16

Chapter 7

Hidden Transport Dependent API

The hidden transport dependent functions are placed in the Xtransport record. These function are similar to the Exposed Transport
Independent API, but some of the parameters and return values are slightly different. Stuff like the #ifdef SUNSYSV should
be handled inside these functions.

» XtransConnlInfo *OpenCOTSClient (struct _Xtransport *thistrans, char *protocol, char *host, char *port)

This function creates a Connection-Oriented Transport. The parameter thistrans points to an Xtransport entry in the trans-
port table. The parameters protocol, host, and port, point to strings containing the corresponding parts of the address that
was passed into TRANS (OpenCOTSClient) (). This function must allocate and initialize the contents of the XtransCon-
nlnfo structure that is returned by this function. This function will open the transport, and bind it into the transport namespace
if applicable. The local address portion of the XtransConnlnfo structure will also be filled in by this function.

» XtransConnlnfo *OpenCOTSServer (struct _Xtransport *thistrans, char *protocol, char *host, char *port)

This function creates a Connection-Oriented Transport. The parameter thistrans points to an Xtransport entry in the trans-
port table. The parameters protocol, host, and port point to strings containing the corresponding parts of the address that
was passed into TRANS (OpenCOTSClient) (). This function must allocate and initialize the contents of the XtransCon-
nlnfo structure that is returned by this function. This function will open the transport.

* XtransConnInfo *OpenCLTSClient (struct _Xtransport *thistrans, char *protocol, char *host, char *port)

This function creates a Connection-Less Transport. The parameter thistrans points to an Xtransport entry in the transport
table. The parameters protocol, host, and port point to strings containing the corresponding parts of the address that was
passed into TRANS (OpenCOTSClient) (). This function must allocate and initialize the contents of the XtransConnlnfo
structure that is returned by this function. This function will open the transport, and bind it into the transport namespace if
applicable. The local address portion of the XtransConnInfo structure will also be filled in by this function.

» XtransConnlnfo *OpenCLTSServer (struct _Xtransport *thistrans, char *protocol, char *host, char *port)

This function creates a Connection-Less Transport. The parameter thistrans points to an Xtransport entry in the transport
table. The parameters protocol, host, and port point to strings containing the corresponding parts of the address that was
passed into TRANS (OpenCOTSClient) (). This function must allocate and initialize the contents of the XtransConnlnfo
structure that is returned by this function. This function will open the transport.

* int SetOption (struct _Xtransport *thistrans, int option, int arg)

This function provides a transport dependent way of implementing the options defined by the X Transport Interface. In the
current prototype, this function is not being used, because all of the options defined so far are transport independent. This
function will have to be used if a radically different transport type is added, or a transport dependent option is defined.

* int CreateListener (struct _Xtransport *thistrans, char *port, int flags)

This function takes a transport endpoint opened for a server, and sets it up to listen for incoming connection requests. The
parameter port contains the port portion of the address that was passed to the Open function. The parameter £1ags should
be set to ADDR_IN_USE_ALLOWED if the underlying transport endpoint may be already bound and this should not be
considered as an error. Otherwise flags should be set to 0. This is used by IPv6 code, where the same socket can be bound

X Transport Interface
12/16

to both an IPv6 address and then to a IPv4 address. This function will bind the transport into the transport name space if
applicable, and fill in the local address portion of the XtransConnlInfo structure. The transport endpoint will then be set to
listen for incoming connection requests.

int ResetListener (struct _Xtransport *thistrans)

This function resets the transport for listening.

XtransConnlnfo Accept(struct _Xtransport *thistrans)

This function creates a new transport endpoint as a result of an incoming connection request. The parameter thistransis the
endpoint that was opened for listening by the server. The new endpoint is opened and bound into the transport’s namespace. A
XtransConnlnfo structure describing the new endpoint is returned from this function

int Connect(struct _Xtransport *thistrans, char *host, char *port)

This function establishes a connection to a server. The parameters host and port describe the server to which the connection
should be established. The connection will be established so that Read () and Write () call can be made.

int BytesReadable(struct _Xtransport *thistrans, BytesReadable_t *pend)

This function replaces the Byt esReadable () macro. This allows each transport to have it’s own mechanism for determining
how much data is ready to be read.

int Read(struct _Xtransport *thistrans, char *buf, int size)

This function reads size bytes into buf from the connection.

int Write(struct _Xtransport *thistrans, char *buf, int size)

This function writes size bytes from buf to the connection.

int Readv(struct _Xtransport *thistrans, struct iovec *buf, int size)

This function performs a readv () on the connection.

int Writev(struct _Xtransport *thistrans, struct iovec *buf, int size)

This function performs a writev () on the connection.

int Disconnect(struct _Xtransport *thistrans)

This function initiates an orderly shutdown of a connection. If a transport does not distinguish between orderly and disorderly
disconnects, then a call to this function will have no affect.

int Close(struct _Xtransport *thistrans)

This function will break the connection, and close the endpoint.

X Transport Interface

13/16

Chapter 8

Configuration

The implementation of each transport can be platform specific. It is expected that existing connection types such as TCPCONN,
UNIXCONN, LOCALCONN, and STREAMSCONN will be replaced with flags for each possible transport type.

In X11R6, the below flags to enable transport types were set in ConnectionFlags in the vendor.cf or site.def config files.

In X11R7 modular releases, these flags are set when running configure scripts which include the XTRANS_CONNECTION-

_FLAGS macro from xtrans.m4.

#define configure flag Description
—enable—tcp—tran— Enables the INET (IPv4)
TCPCONN enasle~tep a Domain Socket based
sport
transport
Extends TCPCONN to
IPv6 -—enable-ipv6 enable IPv6 Socket based
transport
UNIXCONN ——enable-unix-tra-— Enables the UNIX Domain
nsport Socket based transport
STREAMSCONN Not available in X11R7 Enables the TLI based
transports
LOCALCONN -—enable-local-tr- Enables.the SYSV Local
ansport connection transports
DNETCONN Not available in X11R7 Enables the DECnet
transports

X Transport Interface

14/16

Chapter 9

Transport Specific Definitions

Protocol Family

Address Component

protocol

host

port

name of an internet

string containing the name

Internet inet inet6 tcp ud of a service or a valid port
pudp addressable host number. Example:
"xserverQ", "7100"
string containing the
DEChnet decnet n:zlrcliie(;fs:blia}zlﬁ) r::t complete name of the
object. Example: "X$X0"
. name of a NETware .
NETware ipx addressable host Not sure of the specifics yet.
OSI osi name of anh(zftl adressable Not sure of the specifics yet.
String containing the port
Local local pts named sco isc (ignored) name, ie "xserverQ",

"fontserverQ".

X Transport Interface
15/16

Chapter 10

Implementation Notes

This section refers to the prototype implementation that is being developed concurrently with this document. This prototype has
been able to flush out many details and problems as the specification was being developed.

In X11R6, all of the source code for this interface was located in xc/1ib/xtrans.

In X11R7, all of the source code for this interface is delivered via the 1ib/1ibxtrans modular package from X.Org, and is
installed under $ {prefix}/X11/Xtrans so that other modules may find it when they build.

All functions names in the source are of the format TRANS (func) (). The TRANS () macro is defined as

#if (__STDC__ && !defined (UNIXCPP)) || defined (ANSICPP)
#define TRANS (func) _PROTOCOLTrans##func

#else

#define TRANS (func) _PROTOCOLTrans/xx/func

#endif

PROTOCOL will be uniquely defined in each directory where this code is compiled. PROTOCOL will be defined to be the name
of the protocol that is implemented by the library or server, such as X11, FS, and ICE.

All libraries and servers that use the X Transport Interface should have a new file called TRANSPORTtrans . c. This file will
include the transports based on the configuration flags provided by the configure script. Below is an example xfstrans.c
for the font server.

#include "config.h"

#define FONT_t 1
#define TRANS_REOPEN 1
#define TRANS_SERVER 1

#include <X11/Xtrans/transport.c>

The source files for this interface are listed below.

Xtrans.h Function prototypes and defines for the Transport Independent APL.

Xtransint.h Used by the interface implementation only. Contains the internal data structures.
Xtranssock.c Socket implementation of the Transport Dependent API.

Xtranstli.c TLIimplementation of the Transport Dependent API.

Xtransdnet.c DECnet implementation of the Transport Dependent AP

Xtranslocal.c Implementation of the Transport Dependent API for SYSV Local connections.

Xtrans.c Exposed Transport Independent API Functions.

X Transport Interface
16/16

Xtransutil.c Collection of Utility functions that use the X Transport Interface.

The file Xt ransint . h contains much of the transport related code that was previously in X1ibint .h and X1ibnet . h. This
will make the definitions available for all transport users. This should also obsolete the equivalent code in other libraries.

	Purposes and Goals
	Overview of the Interface
	Definition of Address Specification Format
	Internal Data Structures
	Xtransport
	XtransConnInfo

	Exposed Transport Independent API
	Core Interface API
	Utility API

	Transport Option Definition
	Hidden Transport Dependent API
	Configuration
	Transport Specific Definitions
	Implementation Notes

