
LATEX and the Gnuplot Plotting Program

David Kotz

Principal author of this tutorial for gnuplot 3.0, July 3, 1991

current gnuplot team

Updates of this tutorial for gnuplot 4.0, March 2004
Updates of this tutorial for gnuplot 4.2, August 2006

Contents

1 Introduction and History 1

2 Using gnuplot for LATEX: a Tutorial 1
2.1 Summary — Use with LATEX . 6

3 Use with EEPIC 8

4 For Former GnuTEX Users 8

5 What is new for TEX and LATEX terminals in gnuplot 4.0 8

6 Sample of epslatex terminal driver 8

7 Contact for help 9

Gnuplot LATEX Tutorial Version 4.2 1

1 Introduction and History

Gnuplot was originally developed by Colin Kelley and Thomas Williams in 1986 to plot functions and data
files on a variety of terminals. In 1988 and 1989 I created an alternate version, known as GnuTEX, that
supported a new “terminal type” called latex, so gnuplot would output LATEX code. The plot could then be
included in a LATEX document. I added a number of embellishments, supported only by the latex terminal,
allowing the user to produce publication-quality plots.

In late 1989 and early 1990 GnuTEX and a number of other gnuplot variants were merged together into a
new release of gnuplot, 2.0. This includes, among many other improvements, a LATEX driver derived from the
one in GnuTEX. Former GnuTEX users are referred to Section 4 for information about adapting to gnuplot.
Anyone interested in using gnuplot with LATEX should read the next section, a tutorial, and the primary
gnuplot manual.

The reader should note that the LATEX picture environments output by gnuplot can be quite large and
complicated, and can easily exceed the memory capacity of TEX. If an enlarged version of TEX is available, it
is wise to use it. Otherwise, keep your plots simple and add \clearpage to your document where necessary.

There is also a new EEPIC driver (eepic), intended for use with the EEPIC macro package for LATEX.
EEPIC allows for much more efficient line-drawing, runs through LATEX faster, and uses less memory. See
Section 3 for more information.

There is a small package of auxiliary files (makefiles and scripts) that I find useful for making LATEX plots
with gnuplot. This is available for ftp as pub/gnuplot-latex.shar from cs.duke.edu. I can mail copies
(see the end of this paper for information).

2 Using gnuplot for LATEX: a Tutorial

Gnuplot is by nature an interactive program. Users making plots for LATEX will generally not use gnuplot
interactively. Whenever hard copy is desired from gnuplot, the program need not be run on a graphics
terminal. In this case the output is directed to a file or pipe, then sent to the appropriate output device. For
example, output from the terminal type unixplot may be sent to a program interpreting the Unix plotting
standard. The terminal types imagen and postscript may be used for output to printers understanding
those languages. (A shell script (lasergnu) is supplied with the distribution that will accept a gnuplot
command or input file and send the output to an Imagen or Postscript laser printer. This script may have
been adapted to your site.) The terminal type fig outputs FIG code that can be read by the Fig graphics
program and translated into forms usable in both TEX and LATEX documents.

We now ignore the interactive nature of gnuplot and provide the input to gnuplot from a file, i.e.,

gnuplot plotcommands.gp

In this example, all of the commands to gnuplot are contained in the file plotcommands.gp. Multiple
filenames may be supplied to gnuplot this way, read in the order they are given. The output (one or more
plots) may be piped to another program or redirected to a file. Usually, however, we direct the output
explicitly with an instruction to gnuplot (the set output "outfile.tex" command). Gnuplot continues to
print error messages to the terminal (stderr). After printing, the output file has to be closed by set output,
i.e. without the file name specification.

Example 1: Here is a first example, producing a plot for this document. The gnuplot input file is given
below, and the output appears as Figure 1. The input file defines the output to be in LATEX, gives a file
name for the output, and plots y = sin(x) for x on [−π, π]. To produce the figure, I simply \input{eg1} in
a center environment in a figure environment. In following examples, I will enclose the figure in a box to
make it look a little better.

set terminal latex
set output "eg1.tex"
plot [-3.14:3.14] sin(x)

Gnuplot LATEX Tutorial Version 4.2 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

sin(x)

Figure 1: A first example: y = sin(x).

Note that gnuplot has drawn in the axes, labeled the tic marks for us, scaled the y axis automatically, and
added a key in the upper-right-hand corner (this may be moved with the set key command, and removed
with unset key1).

This is the default line style for the LATEX driver. Because of the limited picture capabilities of LATEX,
many dots are required to approximate drawing a solid line. This may overload the memory of many TEX
implementations. There are other line types available that draw dotted lines and use much less memory.
The EEPIC driver draws solid lines with much less memory usage.

Example 2: Now we will embellish the plot a little with some labels. This input file produces Figure 2.

set terminal latex
set output "eg2.tex"
set size 5/5., 4/3.
set format xy "$%g$"
set title "This is a plot of $y=\\sin(x)$"
set xlabel "This is the x axis"
set ylabel "This is\\the\\y axis"
plot [0:6.28] [0:1] sin(x)

We have specified the plot to be 5 inches wide and 4 inches tall with the set size command. This is
the size of the area used by the plot, including space for the labels. In the first example, this size was the
default 5 inches by 3 inches. By specifying the scaling factors of 1 (or 5/5) and 1.3333 (or 4/3), we obtain
the desired plot size.

We have requested that the format used by the x- and y-axis tic mark labels be in LATEX math mode.
This makes the labels look a little better. The default is set format xy "%g". The %g represents the
general-purpose floating point formatting specification for the printf function in C. Any valid floating-point
formatting specification, or LATEX command, is allowed in the format.

A title for the plot and labels for the axes were set up in the next three commands. Note that they are
processed by LATEX and so may have math mode and other symbols in them. The ylabel may have multiple
lines, delineated with \\. The ylabel can be moved around with optional offset parameters (see set ylabel
in the gnuplot manual). Typically, the ylabel needs to be moved to the left to avoid interfering with the
left-hand side of the plot. Once these labels are set up, they will be used for all subsequent plot commands
until they are changed. These labels are also supported by the other terminal types, but (of course) any
LATEX code in the string will not be interpreted. We have also defined the range of both x (now [0, 2π]) and
y (here [0, 1]).

1In gnuplot version 4.0, the syntax set noXXX changed to unset XXX.

Gnuplot LATEX Tutorial Version 4.2 3

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6

This is
the

y axis

This is the x axis

Figure 2: A more fancy example.

Gnuplot LATEX Tutorial Version 4.2 4

So far we have plotted one curve, y = sin(x), on one plot. In gnuplot, each plot command generates a
new plot. If the output is to a screen, the screen is cleared. If to a printer, a new page is produced. In the
latex case, a new picture is started. It is not likely that LATEX users will want this to happen, so generally
each plot has its own input file and is kept in a separate output (.tex) file for inclusion at different places
in the document.

Example 3: To place more than one curve on a plot, use one plot statement and separate the description
of each curve by a comma. In our next example, we will plot both a function and a data file on the same
plot. This plot is shown in Figure 3.

set terminal latex
set output "eg3.tex"
set format xy "$%g$"
set title "This is another plot"
set xlabel "x axis"
set ylabel "y axis"
set key at 15,-10
plot x with lines, "eg3.dat" with linespoints

−20

−15

−10

−5

0

5

10

15

20

−20 −15 −10 −5 0 5 10 15 20

y axis

x axis

This is another plot

x
”eg3.dat”

3333333333333333333
3

3

3
333333333333333333

3

Figure 3: An example with two curves on the same plot.

Here you will see that the x range was not specified. The x range is determined automatically, unless
specified by the user. In this case, it is defined by the range of the data file "eg3.dat". The function is
plotted over the same range. If no data files or x range are supplied, the default range of [−10 : 10] is used.
We have also moved the key to a different position. The function y = x is plotted “with lines”, which is the
default plot style for functions, and is shown here to illustrate the plot style option. The data file eg3.dat
is plotted with style linespoints, a style like lines that also plots a symbol at each data point.

There is a style called points that only plots the symbols at data points, and another called dots that
plots a tiny dot for each data point. The points and linespoints styles produce a different point symbol
for each curve on the plot (for up to twelve symbols, after which they are re-used; see Figure 7 for a complete
list). The lines and linespoints styles use a different line style for each curve on the plot (in this example
the dots have different spacing). The style impulses draws a perpendicular from each point to the x-axis.
Finally, the errorbars style can draw error bars at each data point (see the gnuplot manual).

Example 4: In the above plots of sin(x), it would make more sense to label the axis in units of π. The
position and labels of the tic labels may be specified by the user, with the set xtics and set ytics
commands. This is demonstrated by the following example, shown in Figure 4.

Gnuplot LATEX Tutorial Version 4.2 5

set terminal latex
set output "eg4.tex"
set format y "$%g$"
set format x "$%.2f$"
set title "This is $\sin(x)$"
set xlabel "This is the x axis"
set ylabel "$\sin(x)$"
unset key
set xtics -pi, pi/4
plot [-pi:pi] [-1:1] sin(x)

−1

−0.5

0

0.5

1

−3.14 −2.36 −1.57 −0.79 0.00 0.79 1.57 2.36 3.14

sin(x)

This is the x axis

This is sin(x)

Figure 4: An example of the set xtics command.

Since pi is a predefined variable in gnuplot, we can use it anywhere we may use an expression. The set
xtics command here specifies that the tics on the x axis start at −π and increment by π/4. Since no end
point is given, the tics continue to the right edge. We have also turned off the key, and changed the format
to restrict the x-axis tic labels to 2 decimal places.

With a little more work, the plot can look even better. Another form of this command allows us to
specify the label and position of each tic individually. Replacing the above set xtics command with the
following gives us Figure 5. We also make use of the line continuation character, the backslash (\), to spread
out this command for readability.

set xtics ("$-\pi$" -pi,\
"$-\frac{\pi}{2}$" -pi/2,\
"0" 0,\
"$\frac{\pi}{2}$" pi/2,\
"π" pi)

Going further: You should now be able to make a variety of plots for your LATEX document. We will
present a final example without explanation that showcases some of the capabilities of gnuplot. You may find
documentation for the various commands in the gnuplot manual, though hopefully this example is somewhat
self-explanatory. This is shown in Figure 6.

set terminal latex
set output "eg6.tex"
set size 3.5/5, 3/3.
set format y "$%g$"
set format x "$%5.1f\mu$"
set title "This is a title"

Gnuplot LATEX Tutorial Version 4.2 6

−1

−0.5

0

0.5

1

−π −π
2 0 π

2 π

sin(x)

This is the x axis

This is sin(x)

Figure 5: A fancy example of the set xtics command.

set xlabel "This is the x axis"
set ylabel "This is\\a longer\\version\\ of\\the y\\ axis"
set label "Data" at -5,-5 right
set arrow from -5,-5 to -3.3,-6.7
set key at -4,8
set xtic -10,5,10
plot [-10:10] [-10:10] "eg3.dat" title "Data File" with linespoints 1 7,\

3*exp(-x*x)+1 title "$3e^{-x^{2}}+1$" with lines 4

Line and point types: For reference, we show all of the line and point types available in Figure 7.

2.1 Summary — Use with LATEX

In summary, to use the LATEX facilities of gnuplot, the first command to gnuplot should be

set terminal latex

and the output of gnuplot should be directed to a file, for example,

set output "plot.tex"

This may be anything you like but it should have a .tex extension, of course. Then the size of the plot
should be given. For example, the command

set size 1,2

tells gnuplot to use a 5 inch wide by 6 inch high box for the plot. The numbers given are scale factors, not
the actual size. The default is 5 inches by 3 inches. This is the size of the complete plot, including all labels.

Then you do the (s)plot, and finally issue commands to close the file and switch the terminal back to the
default by

set output
set terminal pop

Finally, the file will contain all of the plots you have specified (you probably only want one plot per file).
This file can then be used in a LATEX document, e.g.,

Gnuplot LATEX Tutorial Version 4.2 7

−10

−5

0

5

10

−10.0µ −5.0µ 0.0µ 5.0µ 10.0µ

This is
a longer
version

of
the y
axis

This is the x axis

This is a title

Data
~

Data File

b b b b b b b b b b
b

b b b b b b b b b bb
3e−x2

+ 1

Figure 6: An example of many features.

Terminal Test

12345678901234567890
test of character width:

left justified
centre+d text

right justified

rotated ce+ntred textrotated by +45 degrotated by -45 deg

show ticscale -1
0
1 3
2 +
3 2
4 ×
5 4
6 ?
7 b
8 c
9 e

10 r
11 s
12 u
13 3
14 +
15 2
16 ×
17 4
18 ?

-�

6

?
�

�
�

�
��@

@@
@

@@R

lw 1
lw 2
lw 3
lw 4
lw 5
lw 6

linewidth

pattern fill
0 1 2 3 4 5 6 7 8 9

filled polygons not supported

Figure 7: All of the line and point types in the LATEX driver.

Gnuplot LATEX Tutorial Version 4.2 8

\begin {figure}
\begin{center}
\input{plot}

\end{center}
\end {figure}

This puts the plot into a figure.
You will also want to read about the following commands: set title, set xlabel, set ylabel, set

key, set label, set xtics, set ytics, and set clip. These are all described in the regular gnuplot
manual.

3 Use with EEPIC
EEPIC is a macro package extending the picture environment of LATEX. If you have the EPIC or EEPIC
macros, and your dvi translator supports the tpic \specials, then you can save LATEX memory. With
EEPIC pictures, the plot.tex file will be smaller, LATEX will run much faster (and need much less memory),
and the dvi file will be smaller. The quality of the output is about the same. If you change the source, you
can generate some more interesting line styles.

To use EEPIC, set gnuplot’s terminal type to eepic instead of latex, and use gnuplot as before. The
line styles will change. Include the file plot.tex in your document as before, along with the document style
options [epic,eepic].

4 For Former GnuTEX Users

Former GnuTEX users may be pleased with many of the new features (many inspired by your suggestions!),
but will also find many changes. gnuplot will not run all GnuTEX input files unchanged. Several GnuTEX
features were not included in gnuplot because they were specific to the LATEX driver. I encourage you to use
the newer gnuplot. A translator is available that attempts to translate your old GnuTEX 1.6 input files into
gnuplot 3.0 files. You can ftp it from cs.duke.edu as dist/sources/gnuplot/gnut2p.tar.Z. This file also
contains directions and a list of changes from GnuTEX to gnuplot.

5 What is new for TEX and LATEX terminals in gnuplot 4.0

In addition to the latex terminal, the following LATEX-friendly terminals are available:

• emtex: Like the latex terminal, but supports emtex specials: any line slopes contrary to a very limited
set of LATEX slopes.

• epslatex: Combined LATEX and postscript parts for text and lines, respectively, with the postscript
part included by \includegraphics{...} command.

• pstex and pslatex: Combined TEX / LATEX and postscript parts for text and lines, respectively,
included by \special{psfile=...} command.

• mf and mp: Produces metafont and metapost outputs.

See helps of these terminals for more details about their usage.
In addition, the postscript eps enhanced is the most useful for TEX and LATEX if you don’t insist of

using TEX fonts for the graph labels, and pdf enhanced and png enhanced for pdfLATEX.

6 Sample of epslatex terminal driver

The epslatex terminal driver allows you to mix the best features of TEX and PostScript. Text elements are
typeset by TEX while the graphic elements are created and positioned in parallel by gnuplot’s PostScript
driver. The plot can use either color or grayscale. The driver produces two different files, one for the eps
part of the figure and one for the LATEX part. The name of the LATEX file is taken from the ‘set output‘
command. The name of the eps file is derived by replacing the file extension (normally ‘.tex‘) with ‘.eps‘
instead.

Gnuplot LATEX Tutorial Version 4.2 9

Interlocking Tori - PM3D surface with depth sorting

-1.5
-1
-0.5
0
0.5
1
1.5

Figure 8: Interlocking tori demo, drawn using the epslatex driver.

7 Contact for help

For general gnuplot questions, the gnuplot mailing list info-gnuplot@lists.sourceforge.net is where you
can send your e-mail, or you can use gnuplot newsgroup comp.graphics.apps.gnuplot. Addional sources
of information are available on gnuplot homepage www.gnuplot.info.

