
Customising spatial data classes and

methods∗

Edzer Pebesma†

Feb 2008

Contents

1 Programming with classes and methods 2
1.1 S3-style classes and methods . 3
1.2 S4-style classes and methods . 4

2 Animal track data in package trip 4
2.1 Generic and constructor functions 5
2.2 Methods for trip objects . 6

3 Multi-point data: SpatialMultiPoints 8

4 Spatio-temporal grids 13

5 Analysing spatial Monte Carlo simulations 17

6 Processing massive grids 18
Although the classes defined in the sp package cover many needs, they do

not go far beyond the most typical GIS data models. In applied research, it
often happens that customised classes would suit the actual data coming from
the instruments better. Since S4 classes have mechanisms for inheritance, it
may be attractive to build on the sp classes, so as to utilise their methods where
appropriate. Here, we will demonstrate a range of different settings in which
sp classes can be extended. Naturally, this is only useful for researchers with
specific and clear needs, so our goal is to show how (relatively) easy it may be
to prototype classes extending sp classes for specific purposes.

∗This vignette formed pp. 127–148 of the first edition of Bivand, R. S., Pebesma, E. and
Gómez-Rubio V. (2008) Applied Spatial Data Analysis with R, Springer-Verlag, New York.
It was retired from the second edition (2013) to accommodate material on other topics, and
is made available in this form with the understanding of the publishers. It has been updated
to the 2013 state of the software, e.g. using over.
†Institute for Geoinformatics, University of Muenster, Weseler Strasse 253, 48151 Münster,

Germany. edzer.pebesma@uni-muenster.de

1

1 Programming with classes and methods

This section will explain the elementary basics of programming with classes and
methods in R. The S language (implemented in R and S-PLUS�) contains two
mechanisms for creating classes and methods: the traditional S3 system and the
more recent S4 system (see Section 2.2 in Bivand et al. (2008), in which classes
were described for the useR — here they are described for the developeR). This
chapter is not a full introduction to R programming (see Braun and Murdoch,
2007, for more details), but it will try to give some feel of how the Spatial classes
in package sp can be extended to be used for wider classes of problems. For
full details, the interested reader is referred to e.g. Venables and Ripley (2000)
and Chambers (1998), the latter being a reference for new-style S4 classes and
methods. Example code is for example found in the source code for package sp,
available from CRAN.

Suppose we define myfun as
> myfun <- function(x) {

+ x + 2

+ }

then, calling it with the numbers 1, 2 and 3 results in
> myfun(1:3)

[1] 3 4 5

or alternatively using a named argument:
> myfun(x = 1:3)

[1] 3 4 5

The return value of the function is the last expression evaluated. Often, we
want to wrap existing functions, such as a plot function:
> plotXplus2Yminus3 <- function(x, y, ...) {

+ plot(x = x + 2, y = y - 3, ...)

+ }

In this case, the ... is used to pass information to the plot function without
explicitly anticipating what it will be: named arguments x and y, or the first two
arguments if they are unnamed are processed, remaining arguments are passed
on. The plot function is a generic method, with an instance that depends on
the class of its first (S3) or first n arguments (S4). The available instances of
plot are shown for S3-type methods by

> methods("plot")

[1] plot.HoltWinters* plot.TukeyHSD* plot.acf* plot.data.frame*

[5] plot.decomposed.ts* plot.default plot.dendrogram* plot.density*

[9] plot.ecdf plot.factor* plot.formula* plot.function

[13] plot.hclust* plot.histogram* plot.isoreg* plot.lm*

[17] plot.medpolish* plot.mlm* plot.ppr* plot.prcomp*

[21] plot.princomp* plot.profile.nls* plot.spec* plot.stepfun

[25] plot.stl* plot.table* plot.ts plot.tskernel*

Non-visible functions are asterisked

and for S4-type methods by
> library(sp)

> showMethods("plot")

2

Function: plot (package graphics)

x="ANY", y="ANY"

x="Spatial", y="missing"

x="SpatialGrid", y="missing"

x="SpatialLines", y="missing"

x="SpatialPoints", y="missing"

x="SpatialPolygons", y="missing"

where we first loaded sp to make sure there are some S4 plot methods to show.

1.1 S3-style classes and methods

Building S3-style classes is simple. Suppose we want to build an object of class
foo:
> x <- rnorm(10)

> class(x) <- "foo"

> x

[1] -1.5948973 0.9924598 -1.2139722 1.2025431 -0.4390340 -1.2496851 -1.0183091

[8] -0.2489171 -0.1442836 -1.6340868

attr(,"class")

[1] "foo"

If we plot this object, e.g., by plot(x) we get the same plot as when we would
not have set the class to foo. If we know, however, that objects of class foo

need to be plotted without symbols but with connected lines, we can write a
plot method for this class:

> plot.foo <- function(x, y, ...) {

+ plot.default(x, type = "l", ...)

+ }

after which plot(x) will call this particular method, rather than a default plot
method.

Class inheritance is obtained in S3 when an object is given multiple classes,
as in
> class(x) <- c("foo", "bar")

> plot(x)

For this plot, first function plot.foo will be looked for, and if not found the
second option plot.bar will be looked for. If none of them is found, the default
plot.default will be used.

The S3 class mechanism is simple and powerful. Much of R works with it,
including key functions such as lm.
> data(meuse)

> class(meuse)

[1] "data.frame"

> class(lm(log(zinc) ~ sqrt(dist), meuse))

[1] "lm"

There is, however, no checking that a class with a particular name does
indeed contain the elements that a certain method for it expects. It also has
design flaws, as method specification by dot separation is ambiguous in case of
names such as as.data.frame, where one cannot tell whether it means that the

3

method as.data acts on objects of class frame, or the method as acts on objects
of class data.frame, or none of them (the answer is: none). For such reasons,
S4-style classes and methods were designed.

1.2 S4-style classes and methods

S4-style classes are formally defined, using setClass. As an example, somewhat
simplified versions of classes CRS and Spatial in sp are
> setClass("CRS", representation(projargs = "character"))

> setClass("Spatial", representation(bbox = "matrix",

+ proj4string = "CRS"), validity <- function(object) {

+ bb <- bbox(object)

+ if (!is.matrix(bb))

+ return("bbox should be a matrix")

+ n <- dimensions(object)

+ if (n < 2)

+ return("spatial.dimension should be 2 or more")

+ if (any(is.na(bb)))

+ return("bbox should never contain NA values")

+ if (any(!is.finite(bb)))

+ return("bbox should never contain infinite values")

+ if (any(bb[, "max"] < bb[, "min"]))

+ return("invalid bbox: max < min")

+ TRUE

+ })

The command setClass defines a class name as a formal class, gives the
names of the class elements (called slots), and their type—type checking will
happen upon construction of an instance of the class. Further checking, e.g., on
valid dimensions and data ranges can be done in the validity function. Here,
the validity function retrieves the bounding box using the generic bbox method.
Generics, if not defined in the base R system, e.g.,
> isGeneric("show")

[1] TRUE

can be defined with setGeneric. Defining a specific instance of a generic is done
by setMethod:
> setGeneric("bbox", function(obj) standardGeneric("bbox"))

> setMethod("bbox", signature = "Spatial", function(obj) obj@bbox)

where the signature tells the class of the first (or first n) arguments. Here, the
@ operator is used to access the bbox slot in an S4 object, not to be confused
with the $ operator to access list elements.

We will now illustrate this mechanism by providing a few examples of classes,
building on those available in package sp.

2 Animal track data in package trip

CRAN Package trip, written by Michael Sumner (Kirkwood et al., 2006; Page
et al., 2006), provides a class for animal tracking data. Animal tracking data
consist of sets of (x, y, t) stamps, grouped by an identifier pointing to an individ-
ual animal, sensor or perhaps isolated period of monitoring. A strategy for this
(slightly simplified from that of trip) is to extend the SpatialPointsDataFrame

4

class by a length 2 character vector carrying the names of the time column and
the trip identifier column in the SpatialPointsDataFrame attribute table.

Package trip does a lot of work to read and analyse tracking data from data
formats typical for tracking data (Argos DAT), removing duplicate observa-
tions and validating the objects, e.g., checking that time stamps increase and
movement speeds are realistic. We ignore this and stick to the bare bones.

We now define a class called trip that extends SpatialPointsDataFrame:

> library(sp)

> setClass("trip", representation("SpatialPointsDataFrame",

+ TOR.columns = "character"), validity <- function(object) {

+ if (length(object@TOR.columns) != 2)

+ stop("Time/id column names must be of length 2")

+ if (!all(object@TOR.columns %in% names(object@data)))

+ stop("Time/id columns must be present in attribute table")

+ TRUE

+ })

> showClass("trip")

Class "trip" [in ".GlobalEnv"]

Slots:

Name: TOR.columns data coords.nrs coords bbox

Class: character data.frame numeric matrix matrix

Name: proj4string

Class: CRS

Extends:

Class "SpatialPointsDataFrame", directly

Class "SpatialPoints", by class "SpatialPointsDataFrame", distance 2

Class "Spatial", by class "SpatialPointsDataFrame", distance 3

that checks, upon creation of objects, that indeed two variable names are passed
and that these names refer to variables present in the attribute table.

2.1 Generic and constructor functions

It would be nice to have a constructor function, just like data.frame or Spatial-
Points, so we now create it and set it as the generic function to be called in case
the first argument is of class SpatialPointsDataFrame.

> trip.default <- function(obj, TORnames) {

+ if (!is(obj, "SpatialPointsDataFrame"))

+ stop("trip only supports SpatialPointsDataFrame")

+ if (is.numeric(TORnames))

+ TORnames <- names(obj)[TORnames]

+ new("trip", obj, TOR.columns = TORnames)

+ }

> if (!isGeneric("trip")) setGeneric("trip", function(obj,

+ TORnames) standardGeneric("trip"))

[1] "trip"

> setMethod("trip", signature(obj = "SpatialPointsDataFrame",

+ TORnames = "ANY"), trip.default)

[1] "trip"

5

We can now try it out, with turtle data:

> turtle <- read.csv(system.file("external/seamap105_mod.csv",

+ package = "sp"))

> timestamp <- as.POSIXlt(strptime(as.character(turtle$obs_date),

+ "%m/%d/%Y %H:%M:%S"), "GMT")

> turtle <- data.frame(turtle, timestamp = timestamp)

> turtle$lon <- ifelse(turtle$lon < 0, turtle$lon + 360,

+ turtle$lon)

> turtle <- turtle[order(turtle$timestamp),]

> coordinates(turtle) <- c("lon", "lat")

> proj4string(turtle) <- CRS("+proj=longlat +ellps=WGS84")

> turtle$id <- c(rep(1, 200), rep(2, nrow(coordinates(turtle)) -

+ 200))

> turtle_trip <- trip(turtle, c("timestamp", "id"))

> summary(turtle_trip)

Object of class trip

Coordinates:

min max

lon 140.923 245.763

lat 21.574 39.843

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

Number of points: 394

Data attributes:

id obs_date

Min. :1.000 01/02/1997 04:16:53: 1

1st Qu.:1.000 01/02/1997 05:56:25: 1

Median :1.000 01/04/1997 17:41:54: 1

Mean :1.492 01/05/1997 17:20:07: 1

3rd Qu.:2.000 01/06/1997 04:31:13: 1

Max. :2.000 01/06/1997 06:12:56: 1

(Other) :388

timestamp

Min. :1996-08-11 01:15:00

1st Qu.:1996-10-30 00:10:04

Median :1997-01-24 23:31:01

Mean :1997-01-26 06:24:56

3rd Qu.:1997-04-10 12:26:20

Max. :1997-08-13 20:19:46

2.2 Methods for trip objects

The summary method here is not defined for trip, but is the default summary
inherited from class Spatial. As can be seen, nothing special about the trip
features is mentioned, such as what the time points are and what the identifiers.
We could alter this by writing a class-specific summary method

> summary.trip <- function(object, ...) {

+ cat("Object of class \"trip\"\nTime column: ")

+ print(object@TOR.columns[1])

+ cat("Identifier column: ")

+ print(object@TOR.columns[2])

+ print(summary(as(object, "Spatial")))

+ print(summary(object@data))

+ }

> setMethod("summary", "trip", summary.trip)

6

[1] "summary"

> summary(turtle_trip)

Object of class "trip"

Time column: [1] "timestamp"

Identifier column: [1] "id"

Object of class Spatial

Coordinates:

min max

lon 140.923 245.763

lat 21.574 39.843

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

id obs_date

Min. :1.000 01/02/1997 04:16:53: 1

1st Qu.:1.000 01/02/1997 05:56:25: 1

Median :1.000 01/04/1997 17:41:54: 1

Mean :1.492 01/05/1997 17:20:07: 1

3rd Qu.:2.000 01/06/1997 04:31:13: 1

Max. :2.000 01/06/1997 06:12:56: 1

(Other) :388

timestamp

Min. :1996-08-11 01:15:00

1st Qu.:1996-10-30 00:10:04

Median :1997-01-24 23:31:01

Mean :1997-01-26 06:24:56

3rd Qu.:1997-04-10 12:26:20

Max. :1997-08-13 20:19:46

As trip extends SpatialPointsDataFrame, subsetting using "[" and column
selection or replacement using "[[" or "$" all work, as these are inherited. Cre-
ating invalid trip objects can be prohibited by adding checks to the validity
function in the class definition, e.g., will not work because the time and/or id
column are not present any more.

A custom plot method for trip could be written, for example using colour to
denote a change in identifier:

> setGeneric("lines", function(x, ...) standardGeneric("lines"))

[1] "lines"

> setMethod("lines", signature(x = "trip"), function(x,

+ ..., col = NULL) {

+ tor <- x@TOR.columns

+ if (is.null(col)) {

+ l <- length(unique(x[[tor[2]]]))

+ col <- hsv(seq(0, 0.5, length = l))

+ }

+ coords <- coordinates(x)

+ lx <- split(1:nrow(coords), x[[tor[2]]])

+ for (i in 1:length(lx)) lines(coords[lx[[i]],],

+ col = col[i], ...)

+ })

[1] "lines"

Here, the col argument is added to the function header so that a reasonable
default can be overridden, e.g., for black/white plotting.

7

3 Multi-point data: SpatialMultiPoints

One of the feature types of the OpenGeospatial Consortium (OGC) simple fea-
ture specification that has not been implemented in sp is the MultiPoint object.
In a MultiPoint object, each feature refers to a set of points. The sp classes
SpatialPointsDataFrame only provide reference to a single point. Instead of
building a new class up from scratch, we’ll try to re-use code and build a class
SpatialMultiPoint from the SpatialLines class. After all, lines are just sets of
ordered points.

In fact, the SpatialLines class implements the MultiLineString simple fea-
ture, where each feature can refer to multiple lines. A special case is formed if
each feature only has a single line:

> setClass("SpatialMultiPoints", representation("SpatialLines"),

+ validity <- function(object) {

+ if (any(unlist(lapply(object@lines,

+ function(x) length(x@Lines))) !=

+ 1))

+ stop("Only Lines objects with one Line element")

+ TRUE

+ })

> SpatialMultiPoints <- function(object) new("SpatialMultiPoints",

+ object)

As an example, we can create an instance of this class for two MultiPoint
features each having three locations:

> n <- 5

> set.seed(1)

> x1 <- cbind(rnorm(n), rnorm(n, 0, 0.25))

> x2 <- cbind(rnorm(n), rnorm(n, 0, 0.25))

> x3 <- cbind(rnorm(n), rnorm(n, 0, 0.25))

> L1 <- Lines(list(Line(x1)), ID = "mp1")

> L2 <- Lines(list(Line(x2)), ID = "mp2")

> L3 <- Lines(list(Line(x3)), ID = "mp3")

> s <- SpatialLines(list(L1, L2, L3))

> smp <- SpatialMultiPoints(s)

If we now plot object smp, we get the same plot as when we plot s, showing
the two lines. The plot method for a SpatialLines object is not suitable, so we
write a new one:

> plot.SpatialMultiPoints <- function(x, ..., pch = 1:length(x@lines),

+ col = 1, cex = 1) {

+ n <- length(x@lines)

+ if (length(pch) < n)

+ pch <- rep(pch, length.out = n)

+ if (length(col) < n)

+ col <- rep(col, length.out = n)

+ if (length(cex) < n)

+ cex <- rep(cex, length.out = n)

+ plot(as(x, "Spatial"), ...)

+ for (i in 1:n) points(x@lines[[i]]@Lines[[1]]@coords,

+ pch = pch[i], col = col[i], cex = cex[i])

+ }

> setMethod("plot", signature(x = "SpatialMultiPoints",

+ y = "missing"), function(x, y, ...) plot.SpatialMultiPoints(x,

+ ...))

8

[1] "plot"

Here we chose to pass any named ... arguments to the plot method for a
Spatial object. This function sets up the axes and controls the margins, aspect
ratio, etc. All arguments that need to be passed to points (pch for symbol
type, cex for symbol size and col for symbol colour) need explicit naming and
sensible defaults, as they are passed explicitly to the consecutive calls to points.
According to the documentation of points, in addition to pch, cex and col, the
arguments bg and lwd (symbol fill colour and symbol line width) would need
a similar treatment to make this plot method completely transparent with the
base plot method—something an end user would hope for.

Having pch, cex and col arrays the length of the number of MultiPoints sets
rather than the number of points to be plotted is useful for two reasons. First,
the whole point of MultiPoints object is to distinguish sets of points. Second,
when we extend this class to SpatialMultiPointsDataFrame, e.g., by
> cName <- "SpatialMultiPointsDataFrame"

> setClass(cName, representation("SpatialLinesDataFrame"),

+ validity <- function(object) {

+ lst <- lapply(object@lines, function(x) length(x@Lines))

+ if (any(unlist(lst) != 1))

+ stop("Only Lines objects with single Line")

+ TRUE

+ })

> SpatialMultiPointsDataFrame <- function(object) {

+ new("SpatialMultiPointsDataFrame", object)

+ }

then we can pass symbol characteristics by (functions of) columns in the at-
tribute table:

> df <- data.frame(x1 = 1:3, x2 = c(1, 4, 2), row.names = c("mp1",

+ "mp2", "mp3"))

> smp_df <- SpatialMultiPointsDataFrame(SpatialLinesDataFrame(smp,

+ df))

> setMethod("plot", signature(x = "SpatialMultiPointsDataFrame",

+ y = "missing"), function(x, y, ...) plot.SpatialMultiPoints(x,

+ ...))

[1] "plot"

> grys <- c("grey10", "grey40", "grey80")

> plot(smp_df, col = grys[smp_df[["x1"]]], pch = smp_df[["x2"]],

+ cex = 2, axes = TRUE)

for which the plot is shown in Figure 1.
Hexagonal grids are like square grids, where grid points are centres of match-

ing hexagons, rather than squares. Package sp has no classes for hexagonal
grids, but does have some useful functions for generating and plotting them.
This could be used to build a class. Much of this code in sp is based on postings
to the R-sig-geo mailing list by Tim Keitt, used with permission.

The spatial sampling method spsample has a method for sampling points on
a hexagonal grid:
> data(meuse.grid)

> gridded(meuse.grid) = ~x + y

> xx <- spsample(meuse.grid, type = "hexagonal", cellsize = 200)

> class(xx)

9

−2 −1 0 1

−
0.

6
−

0.
2

0.
2

0.
6

●

●● ●

●

Figure 1: Plot of the SpatialMultiPointsDataFrame object.

[1] "SpatialPoints"

attr(,"package")

[1] "sp"

gives the points shown in the left side of Figure 2. Note that an alternative
hexagonal representation is obtained by rotating this grid 90 degrees; we will
not further consider that here.

> HexPts <- spsample(meuse.grid, type = "hexagonal", cellsize = 200)

> spplot(meuse.grid["dist"], sp.layout = list("sp.points",

+ HexPts, col = 1))

> HexPols <- HexPoints2SpatialPolygons(HexPts)

> df <- over(HexPols, meuse.grid)

> HexPolsDf <- SpatialPolygonsDataFrame(HexPols, df, match.ID = FALSE)

> spplot(HexPolsDf["dist"])

for which the plots are shown in Figure 2.
We can now generate and plot hexagonal grids, but need to deal with two

representations: as points and as polygons, and both representations do not tell
by themselves that they represent a hexagonal grid.

For designing a hexagonal grid class we will extend SpatialPoints, assuming
that computation of the polygons can be done when needed without a prohibitive
overhead.
> setClass("SpatialHexGrid", representation("SpatialPoints",

+ dx = "numeric"), validity <- function(object) {

+ if (object@dx <= 0)

+ stop("dx should be positive")

+ TRUE

+ })

> setClass("SpatialHexGridDataFrame",

+ representation("SpatialPointsDataFrame",

+ dx = "numeric"), validity <- function(object) {

+ if (object@dx <= 0)

+ stop("dx should be positive")

+ TRUE

+ })

10

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

Figure 2: Hexagonal points (left) and polygons (right).

Note that these class definitions do not check that instances actually do form
valid hexagonal grids; a more robust implementation could provide a test that
distances between points with equal y coordinate are separated by a multiple of
dx, that the y-separations are correct and so on.

It might make sense to adapt the generic spsample method in package sp to
return SpatialHexGrid objects; we can also add plot and spsample methods for
them. Method over should work with a SpatialHexGrid as its first argument,
by inheriting from SpatialPoints. Let us first see how to create the new classes.
Without a constructor function we can use

> HexPts <- spsample(meuse.grid, type = "hexagonal", cellsize = 200)

> Hex <- new("SpatialHexGrid", HexPts, dx = 200)

> df <- over(Hex, meuse.grid)

> spdf <- SpatialPointsDataFrame(HexPts, df)

> HexDf <- new("SpatialHexGridDataFrame", spdf, dx = 200)

Because of the route taken to define both HexGrid classes, it is not obvious that
the second extends the first. We can tell the S4 system this by setIs:

> is(HexDf, "SpatialHexGrid")

[1] FALSE

> setIs("SpatialHexGridDataFrame", "SpatialHexGrid")

> is(HexDf, "SpatialHexGrid")

[1] TRUE

to make sure that methods for SpatialHexGrid objects work as well for objects
of class SpatialHexGridDataFrame.

11

When adding methods, several of them will need conversion to the polygon
representation, so it makes sense to add the conversion function such that e.g.
as(x, "SpatialPolygons") will work:
> setAs("SpatialHexGrid", "SpatialPolygons",

+ function(from) HexPoints2SpatialPolygons(from,

+ from@dx))

> setAs("SpatialHexGridDataFrame", "SpatialPolygonsDataFrame",

+ function(from) SpatialPolygonsDataFrame(as(obj,

+ "SpatialPolygons"), obj@data,

+ match.ID = FALSE))

We can now add plot, spplot, spsample and over methods for these classes:
> setMethod("plot", signature(x = "SpatialHexGrid", y = "missing"),

+ function(x, y, ...) plot(as(x, "SpatialPolygons"),

+ ...))

[1] "plot"

> setMethod("spplot", signature(obj = "SpatialHexGridDataFrame"),

+ function(obj, ...) spplot(SpatialPolygonsDataFrame(as(obj,

+ "SpatialPolygons"), obj@data, match.ID = FALSE),

+ ...))

[1] "spplot"

> setMethod("spsample", "SpatialHexGrid", function(x, n,

+ type, ...) spsample(as(x, "SpatialPolygons"), n = n,

+ type = type, ...))

[1] "spsample"

> setMethod("over", c("SpatialHexGrid", "SpatialPoints"),

+ function(x, y, ...) over(as(x, "SpatialPolygons"),

+ y))

[1] "over"

After this, the following will work:

> spplot(meuse.grid["dist"], sp.layout = list("sp.points",

+ Hex, col = 1))

> spplot(HexDf["dist"])

Coercion to a data frame is done by

> as(HexDf, "data.frame")

Another detail not mentioned is that the bounding box of the hexgrid objects
only match the grid centre points, not the hexgrid cells:
> bbox(Hex)

min max

x 178580.2 181380.2

y 329646.2 333629.9

> bbox(as(Hex, "SpatialPolygons"))

min max

x 178480.2 181480.2

y 329530.8 333745.4

One solution for this is to correct for this in a constructor function, and check for
it in the validity test. Explicit coercion functions to the points representation
would have to set the bounding box back to the points ranges. Another solution
is to write a bbox method for the hexgrid classes, taking the risk that someone
still looks at the incorrect bbox slot.

12

4 Spatio-temporal grids

Spatio-temporal data can be represented in different ways. One simple option
is when observations (or model-results, or predictions) are given on a regular
space-time grid.

Objects of class or extending SpatialPoints, SpatialPixels and SpatialGrid

do not have the constraint that they represent a two-dimensional space; they
may have arbitrary dimension; an example for a three-dimensional grid is

> n <- 10

> x <- data.frame(expand.grid(x1 = 1:n, x2 = 1:n, x3 = 1:n),

+ z = rnorm(n^3))

> coordinates(x) <- ~x1 + x2 + x3

> gridded(x) <- TRUE

> fullgrid(x) <- TRUE

> summary(x)

Object of class SpatialGridDataFrame

Coordinates:

min max

x1 0.5 10.5

x2 0.5 10.5

x3 0.5 10.5

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

x1 1 1 10

x2 1 1 10

x3 1 1 10

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.00800 -0.70750 -0.04317 -0.02348 0.68840 3.81000

We might assume here that the third dimension, x3, represents time. If we are
happy with time somehow represented by a real number (in double precision),
then we are done. A simple representation is that of decimal year, with e.g.
1980.5 meaning the 183rd day of 1980, or e.g. relative time in seconds after the
start of some event.

When we want to use the POSIXct or POSIXlt representations, we need to
do some more work to see the readable version. We will now devise a simple
three-dimensional space-time grid with the POSIXct representation.

> setClass("SpatialTimeGrid", "SpatialGrid",

+ validity <- function(object) {

+ stopifnot(dimensions(object) ==

+ 3)

+ TRUE

+ })

Along the same line, we can extend the SpatialGridDataFrame for space-time:

> setClass("SpatialTimeGridDataFrame", "SpatialGridDataFrame",

+ validity <- function(object) {

+ stopifnot(dimensions(object) == 3)

+ TRUE

+ })

13

> setIs("SpatialTimeGridDataFrame", "SpatialTimeGrid")

> x <- new("SpatialTimeGridDataFrame", x)

A crude summary for this class could be written along these lines:

> summary.SpatialTimeGridDataFrame <- function(object,

+ ...) {

+ cat("Object of class SpatialTimeGridDataFrame\n")

+ x <- gridparameters(object)

+ t0 <- ISOdate(1970, 1, 1, 0, 0, 0)

+ t1 <- t0 + x[3, 1]

+ cat(paste("first time step:", t1, "\n"))

+ t2 <- t0 + x[3, 1] + (x[3, 3] - 1) * x[3, 2]

+ cat(paste("last time step: ", t2, "\n"))

+ cat(paste("time step: ", x[3, 2], "\n"))

+ summary(as(object, "SpatialGridDataFrame"))

+ }

> setMethod("summary", "SpatialTimeGridDataFrame",

+ summary.SpatialTimeGridDataFrame)

[1] "summary"

> summary(x)

Object of class SpatialTimeGridDataFrame

first time step: 1970-01-01 00:00:01

last time step: 1970-01-01 00:00:10

time step: 1

Object of class SpatialGridDataFrame

Coordinates:

min max

x1 0.5 10.5

x2 0.5 10.5

x3 0.5 10.5

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

x1 1 1 10

x2 1 1 10

x3 1 1 10

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu.

-3.00800 -0.70750 -0.04317 -0.02348 0.68840

Max.

3.81000

Next, suppose we need a subsetting method that selects on the time. When
the first subset argument is allowed to be a time range, this is done by

> subs.SpatialTimeGridDataFrame <- function(x, i, j, ...,

+ drop = FALSE) {

+ t <- coordinates(x)[, 3] + ISOdate(1970, 1, 1, 0,

+ 0, 0)

+ if (missing(j))

+ j <- TRUE

+ sel <- t %in% i

+ if (!any(sel))

+ stop("selection results in empty set")

+ fullgrid(x) <- FALSE

+ if (length(i) > 1) {

14

+ x <- x[i = sel, j = j, ...]

+ fullgrid(x) <- TRUE

+ as(x, "SpatialTimeGridDataFrame")

+ }

+ else {

+ gridded(x) <- FALSE

+ x <- x[i = sel, j = j, ...]

+ cc <- coordinates(x)[, 1:2]

+ p4s <- CRS(proj4string(x))

+ SpatialPixelsDataFrame(cc, x@data, proj4string = p4s)

+ }

+ }

> setMethod("[", c("SpatialTimeGridDataFrame", "POSIXct",

+ "ANY"), subs.SpatialTimeGridDataFrame)

[1] "["

> t1 <- as.POSIXct("1970-01-01 0:00:03", tz = "GMT")

> t2 <- as.POSIXct("1970-01-01 0:00:05", tz = "GMT")

> summary(x[c(t1, t2)])

Object of class SpatialTimeGridDataFrame

first time step: 1970-01-01 00:00:01

last time step: 1970-01-01 00:00:10

time step: 1

Object of class SpatialGridDataFrame

Coordinates:

min max

x1 0.5 10.5

x2 0.5 10.5

x3 0.5 10.5

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

x1 1 1 10

x2 1 1 10

x3 1 1 10

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

-3.0080 -0.6497 0.0081 0.0187 0.6798 3.8100 800

> summary(x[t1])

Object of class SpatialPixelsDataFrame

Coordinates:

min max

x1 0.5 10.5

x2 0.5 10.5

Is projected: NA

proj4string : [NA]

Number of points: 100

Grid attributes:

cellcentre.offset cellsize cells.dim

x1 1 1 10

x2 1 1 10

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.40300 -0.42300 0.13530 0.09981 0.77790 2.64900

15

00:00:01 00:00:02 00:00:03 00:00:04

00:00:05 00:00:06 00:00:07 00:00:08

00:00:09 00:00:10

−3

−2

−1

0

1

2

3

4

Figure 3: spplot for an object of class SpatialTimeGridDataFrame, filled with
random numbers.

The reason to only convert back to SpatialTimeGridDataFrame when multiple
time steps are present is that the time step (“cell size” in time direction) cannot
be found when there is only a single step. In that case, the current selection
method returns an object of class SpatialPixelsDataFrame for that time slice.

Plotting a set of slices could be done using levelplot, or writing another
spplot method:
> spplot.stgdf <- function(obj, zcol = 1, ..., format = NULL) {

+ if (length(zcol) != 1)

+ stop("can only plot a single attribute")

+ if (is.null(format))

+ format <- "%Y-%m-%d %H:%M:%S"

+ cc <- coordinates(obj)

+ df <- unstack(data.frame(obj[[zcol]], cc[, 3]))

+ ns <- as.character(coordinatevalues(getGridTopology(obj))[[3]] +

+ ISOdate(1970, 1, 1, 0, 0, 0), format = format)

+ cc2d <- cc[cc[, 3] == min(cc[, 3]), 1:2]

+ obj <- SpatialPixelsDataFrame(cc2d, df)

+ spplot(obj, names.attr = ns, ...)

+ }

> setMethod("spplot", "SpatialTimeGridDataFrame", spplot.stgdf)

[1] "spplot"

Now, the result of
> library(lattice)

> trellis.par.set(canonical.theme(color = FALSE))

> spplot(x, format = "%H:%M:%S", as.table = TRUE, cuts = 6,

+ col.regions = grey.colors(7, 0.55, 0.95, 2.2))

16

is shown in Figure 3. The format argument passed controls the way time is
printed; one can refer to the help of
> `?`(as.character.POSIXt)

for more details about the format argument.

5 Analysing spatial Monte Carlo simulations

Quite often, spatial statistical analysis results in a large number of spatial re-
alisations or a random field, using some Monte Carlo simulation approach. Re-
gardless whether individual values refer to points, lines, polygons or grid cells,
we would like to write some methods or functions that aggregate over these
simulations, to get summary statistics such as the mean value, quantiles, or
cumulative distributions values. Such aggregation can take place in two ways.
Either we aggregate over the probability space, and compute summary statis-
tics for each geographical feature over the set of realisations (i.e., the rows of
the attribute table), or for each realisation we aggregate over the complete geo-
graphical layer or a subset of it (i.e., aggregate over the columns of the attribute
table).

Let us first generate, as an example, a set of 100 conditional Gaussian sim-
ulations for the zinc variable in the meuse data set:
> library(gstat)

> data(meuse)

> coordinates(meuse) <- ~x + y

> v <- vgm(0.5, "Sph", 800, 0.05)

> sim <- krige(log(zinc) ~ 1, meuse, meuse.grid, v, nsim = 100,

+ nmax = 30)

drawing 100 GLS realisations of beta...

[using conditional Gaussian simulation]

> sim@data <- exp(sim@data)

where the last statement back-transforms the simulations from the log scale
to the observation scale. A quantile method for Spatial object attributes can be
written as
> quantile.Spatial <- function(x, ..., byLayer = FALSE) {

+ stopifnot("data" %in% slotNames(x))

+ apply(x@data, ifelse(byLayer, 2, 1), quantile, ...)

+ }

after which we can find the sample lower and upper 95% confidence limits by
> sim$lower <- quantile.Spatial(sim[1:100], probs = 0.025)

> sim$upper <- quantile.Spatial(sim[1:100], probs = 0.975)

To get the sample distribution of the areal median, we can aggregate over
layers:
> medians <- quantile.Spatial(sim[1:100], probs = 0.5,

+ byLayer = TRUE)

> hist(medians)

It should be noted that in these particular cases, the quantities computed
by simulations could have been obtained faster and exact by working analyti-
cally with ordinary (block) kriging and the normal distribution (Section 8.7.2
in Bivand et al. (2008)).

17

A statistic that cannot be obtained analytically is the sample distribution
of the area fraction that exceeds a threshold. Suppose that 500 is a crucial
threshold, and we want to summarise the sampling distribution of the area
fraction where 500 is exceeded:

> fractionBelow <- function(x, q, byLayer = FALSE) {

+ stopifnot(is(x, "Spatial") || !("data" %in%

+ slotNames(x)))

+ apply(x@data < q, ifelse(byLayer,

+ 2, 1), function(r) sum(r)/length(r))

+ }

> over500 <- 1 - fractionBelow(sim[1:100], 200, byLayer = TRUE)

> summary(over500)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.6233 0.6722 0.6900 0.6896 0.7069 0.7483

> quantile(over500, c(0.025, 0.975))

2.5% 97.5%

0.6383983 0.7388898

For space-time data, we could write methods that aggregate over space, over
time or over space and time.

6 Processing massive grids

Up to now we have made the assumption that gridded data can be completely
read, and are kept by R in memory. In some cases, however, we need to process
grids that exceed the memory capacity of the computers available. A method
for analysing grids without fully loading them into memory then seems useful.
Note that package rgdal allows for partial reading of grids, e.g.,

> fn <- system.file("pictures/erdas_spnad83.tif", package = "rgdal")[1]

> x <- readGDAL(fn, output.dim = c(120, 132))

> x$band1[x$band1 <= 0] <- NA

> spplot(x, col.regions = bpy.colors())

reads a downsized grid, where 1% of the grid cells remained. Another option is
reading certain rectangular sections of a grid, starting at some offset.

Yet another approach is to use the low-level opening routines and then sub-
set:

> library(rgdal)

> x <- GDAL.open(fn)

> class(x)

[1] "GDALReadOnlyDataset"

attr(,"package")

[1] "rgdal"

> x.subs <- x[1:100, 1:100, 1]

> class(x.subs)

[1] "SpatialGridDataFrame"

attr(,"package")

[1] "sp"

18

> gridparameters(x.subs)

cellcentre.offset cellsize cells.dim

x 79019 40 100

y 1435288 40 100

An object of class GDALReadOnlyDataset only contains a file handle. The subset
method "[" for it does not, as it quite often does, return an object of the same
class but actually reads the data requested, with arguments interpreted as rows,
columns and raster bands, and returns a SpatialGridDataFrame. We will now
extend this approach to allow partial writing through "[" as well. As the actual
code is rather lengthy and involves a lot of administration, it will not all be
shown and details can be found in the rgdal source code.

We will define two classes,

> setClass("SpatialGDAL", representation("Spatial",

+ grid = "GridTopology", grod = "GDALReadOnlyDataset",

+ name = "character"))

> setClass("SpatialGDALWrite", "SpatialGDAL")

that derive from Spatial, contain a GridTopology and a file handle in the grod

slot. Next, we can define a function open.SpatialGDAL to open a raster file,
returning a SpatialGDAL object and a function copy.SpatialGDAL that returns a
writable copy of the opened raster. Note that some GDAL drivers only allow
copying, some only writing and some both.

> x <- open.SpatialGDAL(fn)

> nrows <- GDALinfo(fn)["rows"]

> ncols <- GDALinfo(fn)["columns"]

> xout <- copy.SpatialGDAL(x, "erdas_spnad83_out.tif")

> bls <- 20

> for (i in 1:(nrows/bls - 1)) {

+ r <- 1 + (i - 1) * bls

+ for (j in 1:(ncols/bls - 1)) {

+ c <- 1 + (j - 1) * bls

+ x.in <- x[r:(r + bls), c:(c + bls)]

+ xout[r:(r + bls), c:(c + bls)] <- x.in$band1 +

+ 10

+ }

+ cat(paste("row-block", i, "\n"))

+ }

> close(x)

> close(xout)

This requires the functions "[" and "[<-" to be present. They are set by

> setMethod("[", "SpatialGDAL", function(x, i, j, ...,

+ drop = FALSE) x@grod[i = i, j = j, ...])

> setReplaceMethod("[", "SpatialGDALWrite", function(x,

+ i, j, ..., value) {

+ ...

+ })

where, for the latter, the implementation details are here omitted. It should be
noted that single rows or columns cannot be read this way, as they cannot be
converted sensibly to a grid.

It should be noted that flat binary representations such as the Arc/Info
Binary Grid allow much faster random access than ASCII representations or

19

compressed formats such as jpeg varieties. Also, certain drivers in the GDAL
library suggest an optimal block size for partial access (e.g., typically a single
row), which is not used here1.

This chapter has sketched developments beyond the base sp classes and
methods used otherwise in this book. Although we think that the base classes
cater for many standard kinds of spatial data analysis, it is clear that specific
research problems will call for specific solutions, and that the R environment
provides the high-level abstractions needed to help busy researchers get their
work done.

References

Roger S. Bivand, Edzer J. Pebesma and Virgilio Gomez-Rubio (2008). Applied
spatial data analysis with R Springer, NY

Braun, W.˜J. and Murdoch, D.˜J. (2007). A first course in statistical program-
ming with R. Cambridge University Press, Cambridge.

Chambers, J.M. (1998). Programming with Data. Springer, New York.

Kirkwood, R., Lynch, M., Gales, N., Dann, P., and Sumner, M. (2006). At-sea
movements and habitat use of adult male Australian fur seals (Arctocephalus
pusillus doriferus). Canadian Journal of Zoology, 84:1781–1788.

Page, B., McKenzie, J., Sumner, M., Coyne, M., and Goldsworthy, S. (2006).
Spatial separation of foraging habitats among New Zealand fur seals. Marine
Ecology Progress Series, 323:263–279.

Venables, W. N. and Ripley, B. D. (2000). S Programming. Springer, New York.

1An attempt to use this block size is, at time of writing, found in the blockApply code,
found in the THK branch of the rgdal project on R-forge.

20

	Programming with classes and methods
	S3-style classes and methods
	S4-style classes and methods

	Animal track data in package trip
	Generic and constructor functions
	Methods for trip objects

	Multi-point data: SpatialMultiPoints
	Spatio-temporal grids
	Analysing spatial Monte Carlo simulations
	Processing massive grids

